
Zoo:
A framework for the verification
of concurrent OCaml 5 programs

using separation logic

Clément
Allain

Gabriel
Scherer

1 / 14

Introduction

Zoo overview

Verification contributions

Physical equality

Future work

OCaml 5 (2022)
Parallelism: multi-core runtime, domains, atomic references

Concurrency: algebraic effects

⇓

Nascent ecosystem of parallel & concurrent software
Domainslib, Saturn, Eio . . .

⇓

Formal verification
2 / 14

OCaml verification ecosystem

Language Concurrency Iris ≈ OCaml Translation Automation

Cameleer ⌢ ⌢ ⌣ ⌣ ⌣
coq_of_ocaml ⌢ ⌢ ⌣ ⌣ ⌢
CFML ⌢ ⌢ ⌣ ⌣ ⌢
Osiris ⌢ ⌣ ⌣ ⌣ ⌢
HeapLang ⌣ ⌣ ⌢ ⌢ À

Zoo ⌣ ⌣ ⌣ ⌣ À

3 / 14

Introduction

Zoo overview

Verification contributions

Physical equality

Future work

Zoo

ocaml2zoo

−−−−−→ Zoo

4 / 14

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

saturn
dune
stack.ml
stack.mli

−−→

theories
domainslib

scheduler__code.v
scheduler__types.v

saturn
stack__code.v
stack__types.v

$ ocaml2zoo project theories

5 / 14

Zoo in practice

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not (Atomic.compare_and_set t old new_) then (

Domain.cpu_relax () ;
push t v

)

Definition stack_push : val :=
rec: "stack_push" "t" "v" =>

let: "old" := !"t" in
let: "new" := ‘Cons("v", "old") in
if: ~ CAS "t" "old" "new" then (

domain_cpu_relax () ;;
"stack_push" "t" "v"

).
6 / 14

Zoo in practice

Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs, stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof. ... Qed.

stack_push is
linearizable

7 / 14

Zoo in practice

Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs, stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof. ... Qed.

stack_push is
linearizable

7 / 14

Zoo features

▶ Algebraic data types
▶ Records
▶ Mutually recursive functions
▶ Physical equality
▶ Structural equality

▶ Atomic references
▶ Atomic record fields
▶ Atomic arrays
▶ Generative constructors

▶ Prophecy variables
▶ Diaframe (basic automation)

8 / 14

Introduction

Zoo overview

Verification contributions

Physical equality

Future work

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std

Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std

Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd

Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd

Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Verification contributions

Rocq

Zoo

Std Persistent

Rcfd Saturn

Standard data structures

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Inf_array
▶ Deque

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues

9 / 14

Introduction

Zoo overview

Verification contributions

Physical equality

Future work

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
if Atomic.compare_and_set t old new then

()
else

push t v

10 / 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
if Atomic.compare_and_set t old new then

()
else

push t v

Physical comparison (==)

10 / 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
if Atomic.compare_and_set t old new then

()
else

push t v

Physical comparison (==)
OCaml: under-specified

10 / 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
if Atomic.compare_and_set t old new then

()
else

push t v

Physical comparison (==)
OCaml: under-specified
HeapLang: too restrictive

incompatible w/ OCaml

10 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in

if Atomic.compare_and_set t old new then

()
else

push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

()
else

push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

⟨ stack-model t (v :: old) ∗ vs
phys≈ old ⟩

()
else

push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

⟨ stack-model t (v :: old) ∗ vs
phys≈ old ⟩

⟨ stack-model t (v :: vs) ⟩
()

else
push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

⟨ stack-model t (v :: old) ∗ vs
phys≈ old ⟩

⟨ stack-model t (v :: vs) ⟩
()

else
push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

⟨ stack-model t (v :: old) ∗ vs
phys≈ old ⟩

⟨ stack-model t (v :: vs) ⟩
()

else
push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
⟨ vs. stack-model t vs ∗ . . . ⟩
if Atomic.compare_and_set t old new then

⟨ stack-model t (v :: old) ∗ vs
phys≈ old ⟩

⟨ stack-model t (v :: vs) ⟩
()

else
push t v

Sharing of immutable blocks

let test1 = 1 :: [] == 1 :: [] (* maybe true *)
let test2 = 1 :: [] == 1 :: [] (* maybe false *)

v1
rocq= v2 ≠⇒ v1

phys≈ v2

Value representation conflicts

type any = Any : 'a -> any
let test1 = Any false == Any 0 (* maybe true *)
let test2 = Any None == Any 0 (* maybe true *)
let test3 = Any [] == Any 0 (* maybe true *)

v1
phys≈ v2 ≠⇒ v1

rocq= v2

11 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }
let close t = match t.state with

| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in
⟨ state. t.state 7−→ state ∗ . . . ⟩
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in
⟨ state. t.state 7−→ state ∗ . . . ⟩
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

⟨ t.state 7−→ state ∗ state
phys
≈ old ∗ . . . ⟩

false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in
⟨ state. t.state 7−→ state ∗ . . . ⟩
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

⟨ t.state 7−→ state ∗ state
phys
≈ old ∗ . . . ⟩

⟨ t.state 7−→ Closing − ∗ . . . ⟩
false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in
⟨ state. t.state 7−→ state ∗ . . . ⟩
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

⟨ t.state 7−→ state ∗ state
phys
≈ old ∗ . . . ⟩

⟨ t.state 7−→ Closing − ∗ . . . ⟩
false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]; ... }

let make fd = { state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->

let close () = Unix.close fd in
let new = Closing close in
⟨ state. t.state 7−→ state ∗ . . . ⟩
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

⟨ t.state 7−→ state ∗ state
phys
≈ old ∗ . . . ⟩

⟨ t.state 7−→ Closing − ∗ . . . ⟩
false

Unsharing of immutable blocks

let x = Some 0
let test = x == x (* maybe false *)

v id1
1

phys
≈ v id2

2 ≠⇒ id1
rocq
̸= id2

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

12 / 14

Generative constructors

type 'a glist =
| Nil
| Cons of 'a * 'a glist [@generative]

type state =
| Open of Unix.file_descr [@generative] [@zoo.reveal]
| Closing of (unit -> unit)

13 / 14

Introduction

Zoo overview

Verification contributions

Physical equality

Future work

Future work

▶ Language features
▶ Exceptions
▶ Algebraic effects
▶ Modules & functors

▶ Coupling with semi-automated verification

▶ Relaxed memory

14 / 14

Thank you for your attention!

	Introduction
	Zoo overview
	Verification contributions
	Physical equality
	Future work

