Zoo:
A framework for the verification
of concurrent OCaml 5 programs
using separation logic

Clément Gabriel
Allain Scherer

1/14

Introduction

L\
OCaml

OCaml 5 (2022)
Parallelism: multi-core runtime, domains, atomic references
Concurrency: algebraic effects

4

Nascent ecosystem of parallel & concurrent software
Domainslib, Saturn, Eio ...

4

Formal verification

2/14

OCaml verification ecosystem

Language Concurrency lIris ~ OCaml Translation Automation
Cameleer ® ® © © ©
coq_of_ocaml ® ® © © @
CFML &) &) © ©)
Osiris ® © © © @
HeapLang © © ® ® S
Zoo © © © © S

3/14

/00 overview

Iris

ocaml2zoo

/00
WROCQ

/oo in practice

project
dune-project
1ib theories
domainslib domainslib
dune scheduler__code.v
scheduler.ml — scheduler__types.v
scheduler.mli saturn
saturn tstack__code.v
dune stack__types.v
stack.ml
stack.mli

$ ocaml2zoo project theories

5/14

/oo in practice

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not (Atomic.compare_and_set t old new_) then (
Domain.cpu_relax () ;
push t v

) OCaml

Definition stack_push : val := aROCQ

rec: "stack_push" "t" "v" =>
let: "old" := !"t" in
let: "new" := ‘Comns("v", "old") in
if: 7 CAS "t" "old" "new" then (
domain_cpu_relax () ;;
"stack_push" "t" "v"

).

6/14

/oo in practice

Lemma stack_push_spec t ¢ v :

<<
stack_inv t ¢

| VW vs, stack_model t vs
>>>

stack_push t v @ Ty

<<<

stack_model t (v :: vs)
| RET (); True
>>>

Proof. ... Qed.

stack_push is
linearizable

7/14

/oo in practice

Lemma stack_push_spec t ¢ v :

<<
stack_inv t ¢

| WV vs, stack_model t vs
>>>

stack_push t v @ Ty

<<<

stack_model t (v :: vs)
| RET (); True
>>>

Proof. ... Qed.

stack_push is
linearizable

7/14

Zoo features

vvyyvyyvyy

Algebraic data types
Records

Mutually recursive functions
Physical equality

Structural equality

Prophecy variables

Diaframe (basic automation)

» Atomic references
» Atomic record fields
» Atomic arrays

» Generative constructors

8/14

Verification contributions

Verification contributions

9/1a

Verification contributions

/00

Rocq

9/1a

Verification contributions

Std

/00

Rocq

9/1a

~

Standard data structures

Array
Dynarray
List
Stack
Queue
Inf_array

Deque

» Domain

» Mutex

» Semaphore
» Condition
» Ivar

» Mvar

9/1a

Verification contributions

Std

Persistent

/00

Rocq

9/1a

Basile Clément Gabriel Scherer

Persistent data structures
» Persistent array
» Persistent store

» Persistent union-find

9/1a

Verification contributions

Std

Persistent

Rcfd

/00

Rocq

9/1a

Thomas Leonard

Parallelism-safe file descriptor
» Generative constructors
» Intricate concurrent protocol

» Two ownership regimes

9/1a

Verification contributions

Std

Persistent

Rcfd

Saturn

/00

Rocq

9/1a

Vesa Karvonen Carine Morel

Standard lock-free data structures
» Stacks
» List-based queues
» Array-based queues
» Stack-based queues

9/1a

Verification contributions

Std

Persistent

Rcfd

Saturn

/00

Rocq

9/1a

Physical equality

Physical equality in fine-grained concurrent programs
type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in

let new = v :: old in

if Atomic.compare_and_set t old new then
O

else

push t v

10/ 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () = Physical comparison (==)
Atomic.make []

let rec push t v =
let old = Atomic.get t in

let new = v :: old in

if Atomic.compare_and_set t old new then
O

else

push t v

10/ 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () = Physical comparison (==)

Atomic.make [] OCaml: under-specified

let rec push t v =
let old = Atomic.get t in

let new = v :: old in

if Atomic.compare_and_set t old new then
O

else

push t v

10/ 14

Physical equality in fine-grained concurrent programs

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in

Physical comparison (==)
OCaml: under-specified
HeaplLang: too restrictive

incompatible w/ OCaml

let new = v :: old in)

if Atomic.compare_and_set t old new then
O

else

push t v

10/ 14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in

if Atomic.compare_and_set t old new then

9]
else
push t v

11/14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
(vs. stack-model t vs * ...)
if Atomic.compare_and_set t old new then

9]
else
push t v

11/14

When physical equality returns true

let rec push t v =
let old = Atomic.get t in
let new = v :: old in
(vs. stack-model t vs * ...)
if Atomic.compare_and_set t old new then
(stack-model t (v :: old) * vs PR old)

9]

else
push t v

11/14

When physical equality returns true

let rec push t v =

let old = Atomic.get t in

let new = v :: old in

(vs. stack-model t vs * ...)

if Atomic.compare_and_set t old new then
(stack-model t (v :: old) * vs PR old)
(stack-model t (v :: vs))
9]

else
push t v

11/14

Sharing of immutable blocks

let testl
let test2

[==1:: [1 (¥ maybe true *)
[==1:: [1 (¥ maybe false *)

roc phys
Vi = Vo :7é> Vi]® W

AR ¥ RT

11/14

Value representation conflicts

type any = Any :
Any false == Any 0 (* maybe true *)
Any None == Any O (* maybe true *)

let testl
let test2
let test3

Any

Vi

'a -> any

[] == Any 0 (* maybe true *)

Pb\)js rocq
~ Vo :7é> Vi = W

11/14

When physical equality returns true

let rec push t v =

let old = Atomic.get t in

let new = v :: old in

(vs. stack-model t vs * ...)

if Atomic.compare_and_set t old new then
(stack-model t (v :: old) * vs PR old)
9]

else
push t v

11/14

When physical equality returns false
type state = Open of Unix.file_descr | Closing of (unit -> unit)

type t = { mutable state: state [@atomicl; ... }
let make fd = { state= Open fd; ... }
let close t = match t.state with

| Closing _ -> false

| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [Jatomic.loc t.state] old new
then ... else

false

12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state HEO |

let make fd

{ state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set t.state! old new

then ... else

false
12/14

When physical equality returns false

type state = Open of Unix.file_descr | of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }
let make fd = { state= Open fd; ... }

let close t = match t.state with
| _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }

let make fd

{ state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false

12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }

let make fd

{ state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in
(state. t.state — state ...)

if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

false
12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }

let make fd

{ state= Open fd; ... }

let close t = match t.state with

| Closing _ -> false

| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in
(state. t.state — state ...)
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else

(t.state — state x state pgés old x ...)

false
12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }

let make fd

{ state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in
(state. t.state — state ...)
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else
(t.state — state x state pgés old x ...)
(t.state — Closing — % ...)

false
12/14

Unsharing of immutable blocks

let x = Some 0O
let test = x == x (¥ maybe false *)

rocq

. h .
it PR it — idy £ id,

.-
= \
\
- =
Clément Allain Armaél Guéneau Vincent Laviron
Impossible! Unique identity. This would be unsharing. It's possible!

12/14

When physical equality returns false

type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable state: state [@atomic]l; ... }

let make fd

{ state= Open fd; ... }

let close t = match t.state with
| Closing _ -> false
| Open fd as old ->
let close () = Unix.close fd in
let new = Closing close in
(state. t.state — state ...)
if Atomic.Loc.compare_and_set [%atomic.loc t.state] old new
then ... else
(t.state — state x state pgés old x ...)
false
12/14

Generative constructors

type 'a glist =
| Nil
| Cons of 'a * 'a glist [Ogenerative]

type state =

| Open of Unix.file_descr [Ogenerative] [0zoo.reveal]
| Closing of (unit -> unit)

13/14

Future work

Future work

» Language features

» Exceptions
» Algebraic effects
» Modules & functors

» Coupling with semi-automated verification

» Relaxed memory

14/14

Thank you for your attention!

	Introduction
	Zoo overview
	Verification contributions
	Physical equality
	Future work

