
Tail Modulo Cons,
OCaml,

and Relational Separation Logic

Clément
Allain

Frédéric
Bour

Basile
Clément

François
Pottier

Gabriel
Scherer

1 / 15

map: natural implementation

let rec map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: map f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

Stack overflow during evaluation (looping recursion ?).

2 / 15

map: accumulator-passing style

let rec map_aps acc f xs =
match xs with
| [] →

List.rev acc
| x :: xs →

let y = f x in
map_aps (y :: acc) f xs

let map xs =
map_aps [] f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

3 / 15

map: destination-passing style
let rec map_dps dst f xs =

match xs with
| [] →

set_field dst 1 []
| x :: xs →

let y = f x in
let dst’ = y :: _ in
set_field dst 1 dst’ ;
map_dps dst’ f xs

let map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
let dst = y :: _ in
map_dps dst f xs ;
dst

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

4 / 15

map: Tail Modulo Constructor (TMC)

let[@tail_mod_cons] rec map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: map f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

5 / 15

TMC transformation
◮ Safe: performed by the OCaml compiler.
◮ Explicit: [@tail_mod_cons] annotation.

◮ Generality:
◮ Works on any algebraic data type (lists, trees, etc.).
◮ Supports mutually recursive functions.

◮ Implementation details: see the paper.
◮ Performance: see benchmarks in the paper.
◮ Feature adoption: see survey in the paper.

◮ Soundness: formally verified in Coq/Rocq in an simplified setting . . .

6 / 15

DataLang: syntax
Index ∋ i ::= 0 | 1 | 2
Tag ∋ t
B ∋ b
L ∋ ℓ
F ∋ f
X ∋ x , y
Val ∋ v , w ::= () | i | t | b | ℓ | @f
Expr ∋ e ::= v | x | let x = e1 in e2 | e1 e2

| e1 = e2 | if e0 then e1 else e2
| { t, e1, e2 }
| e1.(e2) | e1.(e2) ← e3

Def ∋ d ::= fun x → e
Prog ∋ p := F fin

⇀ Def
State ∋ σ := L fin

⇀ Val
Config ∋ ρ := Expr × State

7 / 15

DataLang: map

map := fun f xs →
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: @map f xs

8 / 15

DataLang: map (transformed)

map_dps := fun dst idx f xs →
match xs with
| [] →

dst .(idx) ← []
| x :: xs →

let y = f x in
let dst’ = y :: " in
dst .(idx) ← dst’ ;
@map_dps dst’ 2 f xs

map_dir := fun f xs →
match xs with
| [] →

[]
| x :: xs →

let y = f x in
let dst = y :: " in
@map_dps dst 2 f xs ;
dst

9 / 15

TMC transformation

es
ξ⇝

dir
et ds

ξ⇝
dir

dt

(edst , eidx , es)
ξ⇝

dps
et ds

ξ⇝
dps

dt

ps ⇝ pt

10 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

Termination-preserving behavioral refinement

ps ⊒ pt := ∀ f ∈ dom(ps), vs , vt .
wf(vs) ∧ vs ∼ vt =⇒
@f vs ⊒ @f vt

es ⊒ et := ∀ bt ∈ behaviourspt (et).
∃ bs ∈ behavioursps (es). bs ⊒ bt

behavioursp(e) := {Conv(e ′) | . . . } ⊎ {Div | (e, ∅) ⇑p}

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ≳ pt program pt simulates program ps
(relational separation logic, Simuliris)

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ≳ pt program pt simulates program ps
(relational separation logic, Simuliris)

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

Relational separation logic
rel-pure
es

ps−→
pure

e ′
s et

pt−→
pure

e ′
t e ′

s ≳ e ′
t [Φ]

es ≳ et [Φ]

rel-source-load
(ℓ + i) .→s vs (ℓ + i) .→s vs −∗ vs ≳ et [Φ]

ℓ.(i) ≳ et [Φ]

rel-target-load
(ℓ + i) .→t vt (ℓ + i) .→t vt −∗ es ≳ vt [Φ]

es ≳ ℓ.(i) [Φ]

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ≳ pt program pt simulates program ps
(relational separation logic, Simuliris)

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

Abstract protocols
(calling conventions)

rel-protocol
X(es , et , Ψ) ∀ e ′

s , e ′
t . Ψ(e ′

s , e ′
t) −∗ e ′

s ≳ e ′
t 〈X〉 [Φ]

es ≳ et 〈X〉 [Φ]

11 / 15

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ≳ pt program pt simulates program ps
(relational separation logic, Simuliris)

⇓

ps ⊒ pt program pt refines program ps
(termination-preserving behavioral refinement)

11 / 15

Specification in separation logic

{???}
@map vs ≳ @map_dir vt

{???}

{???}
@map vs ≳ @map_dps ℓ i vt

{???}

12 / 15

Direct transformation

{vs ≈ vt}
@map vs ≳ @map_dir vt

{ws , wt . ws ≈ wt}

rel-dir (Simuliris)

f ∈ dom(ps)
vs ≈ vt

∀ ws , wt . ws ≈ wt −∗ Φ(ws , wt)
@f vs ≳ @f vt [Φ]

13 / 15

DPS transformation

{vs ≈ vt ∗ (ℓ + i) .→t $}
@map vs ≳ @map_dps ℓ i vt

{ws , (). ∃ wt . ws ≈ wt ∗ (ℓ + i) .→t wt}

rel-dps
ξ[f] = fdps

vs ≈ vt
ℓ .→t v

∀ ws , wt . ws ≈ wt −∗ ℓ .→t v [i .→ wt] −∗ Φ(ws , ())
@f vs ≳ @fdps ℓ i vt [Φ]

rel-protocol
X(es , et , Ψ) ∀ e ′

s , e ′
t . Ψ(e ′

s , e ′
t) −∗ e ′

s ≳ e ′
t 〈X〉 [Φ]

es ≳ et 〈X〉 [Φ]

14 / 15

Conclusion

◮ Implementation of the TMC transformation in the OCaml
compiler.

◮ Mechanized soundness proof using relational separation logic.

◮ Abstract protocols to support different calling conventions:
APS, inlining.

15 / 15

Thank you for your attention!

