Tail Modulo Cons,
OCAML,
and Relational Separation Logic

Clément Frédéric Basile Francois Gabriel
Allain Bour Clément Pottier Scherer

1/15

map: natural implementation

let rec map f xs =
match xs with

I —
L]

| x :: xs —
let y = £ x in
v :: map f xs

List.init 250_000 (fun _ — ())
[> map Fun.id
|> ignore

Stack overflow during evaluation (looping recursion?).

2/15

map: accumulator-passing style

let rec map_aps acc f xs =

= let map xs =
match xs with map_aps [] f xs
[[0 —

List.rev acc
| x :: xs —

let y = £ x in

map_aps (y :: acc) f xs

List.init 250_000 (fun _
[> map Fun.id
|> ignore

-)

)

unit = ()

3/15

map: destination-passing style
let rec map_dps dst f xs =
match xs with
0 -
set_field dst 1 []
| x :: xs —
let y = £ x in
let dst’ =y :: in
set_field dst 1 dst’ ;
map_dps dst’ f xs

List.init 250_000 (fun
[> map Fun.id
|> ignore

- : unit = (O

let map f xs =

= O)

match xs with

(1 —
(]

map_dps dst f xs
dst

5

4/15

map: Tail Modulo Constructor (TMC)

let [Otail mod_cons] rec map f xs =
match xs with
I —
[]
| x :: xs —
let y = £ x in
y :: map f xs

List.init 250_000 (fun _ — ())
[> map Fun.id
|> ignore

- : unit = ()

5/15

TMC transformation

v

Safe: performed by the OCAML compiler.
» Explicit: [@tail_mod_cons] annotation.

» Generality:

» Works on any algebraic data type (lists, trees, etc.).
» Supports mutually recursive functions.

» Implementation details: see the paper.

v

Performance: see benchmarks in the paper.

» Feature adoption: see survey in the paper.

» Soundness: formally verified in CoQ/RocCQ in an simplified setting . ..

6/15

DATALANG: syntax
Index
Tag

Def
Prog
State
Config

v wuwuwuwuwwuw

v w ow v

N o+ e

p

® < X Th

012

Olilt|b]|e]ef
v|ix|let x=e ine | e &
€1 = & | if ey then e else &
{t,e1, e}

e1.(e) | e1. (&) « &3
fun X — e

F i Def
L 8 vl
Expr x State

7/15

DATALANG: map

map = fun f xs —
match xs with
] —
[]
| x :: xs —

let y = £ x in
y :: Q@map f xs

8/15

DATALANG: map (transformed)

map_dps

= fun dst idx f xs —

match xs with

| [

—
dst. (idx) <« []
Xs —
let y = £ x in
let dst’ =y :: m in
dst.(idx) <« dst’ ;
Omap_dps dst’ 2 f xs

match xs with

1 —

(]

il Xs —
let y =

let dst

Omap_dps

dst

f x in

dst 2

I
<

map_dir = fun f xs —

H in
f xs

bl

9/15

TMC transformation

€s “§“> €t ds “§“> d;
dir dir
§ £
(ed5t7 €idx 5 es) a;: €t ds a;: d;

Ps ~ Pt

10/15

Transformation soundness

Ps ~> Pt program ps transforms into program p;
U
Ps - Pt program p; refines program ps

(termination-preserving behavioral refinement)

11/15

Termination-preserving behavioral refinement

ps 2 pr = VI e&dom(ps),vs, v;.
wi(Vs) A v ~ vy =
of v, 10f v,

e e = Vb€ behaviours,,(et).

3 bs € behaviours,, (es). bs J by

behavioursy,(e) = {Conv(€')|...}w{Div| (e,0) f,}

11/15

Transformation soundness

Ps ~> Pt program ps transforms into program p;
U
Ps - Pt program p; refines program ps

(termination-preserving behavioral refinement)

11/15

Transformation soundness

Ps ~> Pt program ps transforms into program p;
U
Ps = Pt program p; simulates program p;

(relational separation logic, SIMULIRIS)

Ps 2 pt program p; refines program ps
(termination-preserving behavioral refinement)

11/15

Relational separation logic

REL-PURE
Ps / Pt / / /
& € e — € e. > e [P]

pure

es > e [P

~

REL-SOURCE-LOAD
(L+10)—s vs (C+1) =5 vs > vs 2 & [P]

(.(D) z e [@]

REL-TARGET-LOAD

(C+i)y=eve (CH0) e ve e 2 v, [@]
ez (. (1) [®]

11/15

Abstract protocols
(calling conventions)

REL-PROTOCOL
X(es, €, V) Vel e. V(e e) el > e (X)[D]

& 2z e (X) [9]

7

11/15

Transformation soundness

Ps ~> Pt program ps transforms into program p;
U
Ps = Pt program p; simulates program p;

(relational separation logic, SIMULIRIS)

Ps 2 pt program p; refines program ps
(termination-preserving behavioral refinement)

11/15

Specification in separation logic

{772}

Omap vs > Omap_dir v

(177}
{772}

Omap vs > Omap_dps £ i v

{177}

12/15

Direct transformation

{vs = v}
Omap vs 2 Omap_dir v;

{ws, wp. wg = w;}

REL-DIR (SIMULIRIS)
f € dom(ps)
Vs RV
V we, wi. ws &2 Wy =k D(ws, wy)

of v > of v [¥]

13/15

DPS transformation

{vem vix({+1i)—,m}
Omap v. > Gmap_dps (i v;

~

{ws, Q. Fwp. ws &= wy % (04 1) = wyi }

REL-DPS
f[f] = fdps
Vs 2 V;
(Vv
Y Wey Wi e &2 Wy =k L4 V[i = wi] = &(we, ()
Qf Ve 2 Ofgps L i vy [P]

REL-PROTOCOL

X(es, €, V) Vel e. V(e e) el > e (X)[]
es > e (X) [®]

14 /15

Conclusion

» Implementation of the TMC transformation in the OCAML
compiler.

» Mechanized soundness proof using relational separation logic.
» Abstract protocols to support different calling conventions:

APS, inlining.

15/15

Thank you for your attention!

