
Zoo:
A framework for the verification
of concurrent OCaml 5 programs

using separation logic

Clément
Allain

Gabriel
Scherer

1 / 37

https://github.com/clef-men/zoo

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

2 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

Context

Verification of fine-grained concurrent OCaml 5 programs

Saturn
Kcas

Parabs

3 / 37

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

Iris artillery

▶ higher-order ghost state
▶ user-defined ghost state
▶ invariants
▶ atomic updates
▶ prophecy variables

4 / 37

https://iris-project.org/

HeapLang, the canonical Iris language

▶ simple & expressive, but

▶ lacks basic abstractions
▶ tuples, records
▶ algebraic data types (ADTs)
▶ mutually recursive functions

▶ lacks a standard library

▶ physical equality is problematic
▶ restricted to “unboxed” values
▶ incompatible with OCaml

5 / 37

https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md
https://iris-project.org/

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

6 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

The big picture

ocaml2zoo−→ Zoo

7 / 37

https://github.com/clef-men/zoo

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

saturn
dune
queue.ml
queue.mli

=⇒

theories
domainslib

scheduler__code.v
scheduler__types.v

saturn
queue__code.v
queue__types.v

$ ocaml2zoo project theories

8 / 37

https://github.com/clef-men/zoo

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

=⇒

theories
domainslib

scheduler__code.v
scheduler__types.v

$ ocaml2zoo project theories

9 / 37

https://github.com/clef-men/zoo

Zoo in practice

Lemma stack_push_spec_seq t ι v :
{{{

stack_model t vs
}}}

stack_push t v
{{{

RET ();
stack_model t (v :: vs)

}}}.
Proof.

...
Qed.

Lemma stack_push_spec_atomic t ι v :
<<<

stack_inv t ι
| ∀∀ vs,

stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof.
...

Qed.

10 / 37

https://github.com/clef-men/zoo

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

11 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

Algebraic data types

type 'a t =
| Nil
| Cons of 'a * 'a t

let rec map fn t =
match t with
| Nil -> Nil
| Cons (x, t) ->

let y = fn x in
Cons (y, map fn t)

Notation "'Nil'" := (
in_type "t" 0

)(in custom zoo_tag).
Notation "'Cons'" := (

in_type "t" 1
)(in custom zoo_tag).

Definition map : val :=
rec: "map" "fn" "t" =>

match: "t" with
| Nil => §Nil
| Cons "x" "t" =>

let: "y" := "fn" "x" in
‘Cons("y", "map" "fn" "t")

end.

12 / 37

Records

type 'a t =
{ mutable f1: 'a;

mutable f2: 'a;
}

let swap t =
let f1 = t.f1 in
t.f1 <- t.f2 ;
t.f2 <- f1

Notation "'f1'" := (
in_type "t" 0

)(in custom zoo_field).
Notation "'f2'" := (

in_type "t" 1
)(in custom zoo_field).

Definition swap : val :=
fun: "t" =>

let: "f1" := "t".{f1} in
"t" <-{f1} "t".{f2} ;;
"t" <-{f2} "f1".

13 / 37

Inline records

type 'a node =
| Null
| Node of

{ mutable next: 'a node;
mutable data: 'a;

}

Notation "'Null'" := (
in_type "node" 0

)(in custom zoo_tag).
Notation "'Node'" := (

in_type "node" 1
)(in custom zoo_tag).

Notation "'next'" := (
in_type "node.Node" 0

)(in custom zoo_field).
Notation "'data'" := (

in_type "node.Node" 1
)(in custom zoo_field).

14 / 37

Mutually recursive functions

let rec f x = g x
and g x = f x

Definition f_g := (
recs: "f" "x" => "g" "x"
and: "g" "x" => "f" "x"

)%zoo_recs.

(* boilerplate *)

Definition f := ValRecs 0 f_g.
Definition g := ValRecs 1 f_g.

Instance : AsValRecs' f 0 f_g [f;g].
Proof. done. Qed.
Instance : AsValRecs' g 1 f_g [f;g].
Proof. done. Qed.

15 / 37

Concurrency

Atomic.set e1 e2 e1 <- e2
Atomic.exchange e1 e2 Xchg e1.[contents] e2
Atomic.compare_and_set e1 e2 e3 CAS e1.[contents] e2 e3
Atomic.fetch_and_add e1 e2 FAA e1.[contents] e2

type t = { ...; mutable f : τ [@atomic]; ... }
Atomic.Loc.exchange [%atomic.loc e1.f] e2 Xchg e1.[f] e2
Atomic.Loc.compare_and_set [%atomic.loc e1.f] e2 e3 CAS e1.[f] e2 e3
Atomic.Loc.fetch_and_add [%atomic.loc e1.f] e2 FAA e1.[f] e2

16 / 37

Standard library

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Deque

▶ Domain
▶ Atomic_array
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar

17 / 37

Diaframe (Ike Mulder et al.) support

Proof.
...

iInv "Hinv" as "(:inv_inner =1)".
...
iSplitR ... { iFrame. iSteps. }

iInv "Hinv" as "(:inv_inner =2)".
...
iSplitR ... { iFrame. iSteps. }

...
Qed.

18 / 37

https://gitlab.mpi-sws.org/iris/diaframe

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

19 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

Restriction on physical comparison

Definition val_is_unboxed v :=
match v with
| LitV lit =>

lit_is_unboxed lit
| InjLV (LitV lit) =>

lit_is_unboxed lit
| InjRV (LitV lit) =>

lit_is_unboxed lit
| _ =>

False
end.

Definition vals_compare_safe v1 v2 :=
val_is_unboxed v1 ∨ val_is_unboxed v2.

20 / 37

Treiber stack
type 'a t =

'a list Atomic.t

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then

push t v

Definition push : val :=
rec: "push" "t" "v" :=

let: "old" := ! "t" in
let: "new" := SOME (ref ("v", "old")) in
if: CAS "t" "old" "new" then #() else

"push" "t" "v".
21 / 37

Michael-Scott queue

type ('a, _) node =
| Null : ('a, [> `Null]) node
| Node : { mutable next: ('a, [`Null | `Node]) node [@atomic];

mutable data: 'a; }
-> ('a, [> `Node]) node

type 'a t =
{ mutable front: ('a, [`Node]) node [@atomic];

mutable back: ('a, [`Node]) node [@atomic]; }

Contextual Refinement of the Michael-Sco! "eue (Proof Pearl) CPP ’21, January 18–19, 2021, Virtual, Denmark

· · ·

ℓ→!

"1 ""ℓ!

ℓ→#

ℓ!→ ℓ" ℓ"→ ℓ$ ℓ$→− ""-1ℓ# ℓ#→ ℓnil

Figure 2. The MS-queue consists of a singly linked list. Here the tail pointer is lagging as it points to the second to last node.

detail the key ideas of the re!nement proof and the invariant
used. In Section 6 we present the actual re!nement proof. In
Section 7 we observe that the so-called consistent snapshots
used in the MS-queue can be omitted without compromising
the correctness of the algorithm, and in Section 8 we quickly
comment on how we have used the same proof technique
to prove re!nement for a variant of the MS-queue. Finally,
in Section 9 we detail how the persistent points-to predicate
and its properties are actually de!ned and proved in the
Iris base logic, by introducing two novel resource algebras.
While we do recall the notion of a resource algebra, some
familiarity with the Iris notion of resource algebras is proba-
bly needed to understand the details of (only) this section.
We end by discussing related work in Section 10.

2 The MS-Queue
As depicted in Figure 2, the MS-queue consists of a singly
linked list that contains the values ("1, . . . , "" in the !gure)
in the queue. The !rst node (ℓ!) is called the sentinel and its
content is not a value in the queue. The queue maintains
two pointers, the sentinel pointer (ℓ→!), which points to the
sentinel, and the tail pointer (ℓ→#), which points to the tail
(ℓ#). The tail is either equal to the last node (ℓ$) or the second
to last node. In the latter case, we say that the tail pointer is
lagging behind. Note that ℓ# = ℓ$ when the tail pointer is not
lagging behind.

We adopt the following naming convention: If ℓ" is a loca-
tion representing a node, then a location pointing into that
node is denoted ℓ→" and the location pointing out from that
node to the next node is denoted ℓ"→. If ℓ" is a node and ℓ%
its successor, then the pointer between the nodes can be
denoted both ℓ"→ or ℓ→% depending on the circumstances.

The implementation of the MS-queue is shown in Figure 7.
It is written in HeapLang, a language included in the mecha-
nization of Iris and which ReLoC extends with a type system
to facilitate re!nement proofs. The syntax of the language is
presented in Figure 3, it is a #-calculus with impredicative
polymorphism, iso-recursive types, higher-order store, and
thread-based concurrency. The language and its type system
are standard; further details can be found in [8].

We have kept our implementation as faithful as possi-
ble to the original implementation. In order to emphasize
this, we have annotated the code with line numbers in di-
rect correspondence with the line numbers in Michael and

$::= % | 1 | bool | int | $ × $ | $ + $ | $ → $
| ∀% .$ | ∃% .$ | &% .$ | ref $

' ::= (∈ Z | ℓ ∈)*+ | true | false | (', ') | inj1 ' | inj2 '
| rec , (") = - | Λ.- | pack ' | fold '

- ::= " | ' | if - then - else - | (-, -) | .1 - | .2 - | inj1 - | inj2 -
| match - with inj1 " ⇒ - | inj2 " ⇒ - | - - | - 〈〉
| pack - | unpack - in " .- | fold - | unfold -
| ref (-) | !- | - ← - | CAS(-, -, -) | fork {-} | . . .

Syntactic sugar
Option $! 1 + $ none ! inj1 1 some ' ! inj2 '

#" . - ! rec _ " = - let " = -1 in -2 ! (#" . -2) -2

Figure 3. Syntax of the types and terms of HeapLang.

Scott’s original code [14]. All di"erences are minor and stem
from inherent di"erences between HeapLang and the C-like
language used in the original.

Initialization. The queueMS function is the constructor
for the queue and the entry point to the implementation. It
uses a type abstraction, Λ, such that the queue is generic in
the type of elements that it stores. This lambda also serves
to ensure that the internal state of the queue is encapsulated
in a closure. The initialization allocates an initial node, a
sentinel pointer, and a tail pointer. The latter two points to
the initial node. A newly constructed queue is illustrated in
Figure 4.

A node is a pointer to either none or some of a pair of
a value and a pointer to the next node. The pointer serves
to make nodes comparable by pointer equality such that
pointers to nodes can be changed with CAS.

Since there is no value to put in the initial sentinel, which
queueMS must construct, none is used. All other nodes con-
tain an actual value ' and hence contains some ' . Thus we
often need to get the value of an Option which is known to
be a some. This is the purpose of the getValue function.

Dequeue. Dequeue reads the sentinel pointer and then
the pointer to the sentinel’s successor. If no successor exists
the queue is empty and none is returned. If a succeeding node
is found, dequeue attempts to change the sentinel pointer
to the succeeding node with CAS. If the CAS is successful,
the value in the new sentinel is returned. If the CAS is un-
successful the operation is restarted. Figure 5 shows how

78

22 / 37

RDCSSThe Future is Ours: Prophecy Variables in Separation Logic 45:19

NewRDCSS(n) ! ref(inl(n));

rec Get(!n) !
match !!n with

inl(n) ⇒ n

| inr(!descr) ⇒ Complete(!descr , !n); Get(!n)
end;

15 Complete(!descr , !n) !
16 let (!m,m1,n1,n2,p) = !!descr ;
17 let tid = NewGhostId;
18 letm = !!m ;
19 letnnew = ifm =m1 thenn2 elsen1;
20 Resolve(CmpX(!n, inr(!descr), inl(nnew)),p, tid);
21 ()

1 RDCSS(!m, !n,m1,n1,n2) !
2 letp = NewProph;
3 let !descr = ref(!m,m1,n1,n2,p);
4 rec rdcssinner () =
5 let (v,b) = CmpX(!n, inl(n1), inr(!descr));
6 matchv with

7 inl(n) ⇒
8 ifb then

9 Complete(!descr , !n);n1
10 else n

11 | inr(!′descr)⇒
12 Complete(!′descr , !n); rdcssinner ()
13 end;
14 rdcssinner ()

Fig. 7. The RDCSS implementation.

right to execute the abstract transition from P to Q , and the latter enforces that the atomic
update was used (exactly once) during the proof, namely at the linearization point.

5 UNDERSTANDING THE RDCSS IMPLEMENTATION
Now that we have formalized the speci!cation for RDCSS using logical atomicity, we take a closer
look at the actual implementation in Fig. 7 (ignoring the ghost code for now). Our goal here is to
understand the correctness argument of the implementation at an intuitive level, focusing on the
identi!cation of the linearization point, as this will motivate why we need prophecies.

To use the RDCSS implementation, a client would !rst call NewRDCSS(n) to create an “RDCSS
location” !n with initial value n. The current value of such a location can be read using Get(!n).
Our focus is on the key operation RDCSS(!m, !n,m1,n1,n2) for an RDCSS location !n and a location
!m , which (modulo minor technical details, as we will see) implements the speci!cation rdcss-spec.

The key to verifying that RDCSS satis!es rdcss-spec is to develop an invariant which connects the
physical state of !n with its abstract state. In the following, we will !rst explain how the physical
state of !n maintained by this implementation is used to coordinate concurrent threads, and we
will give some !rst insights into how the invariant relates the physical and abstract states of !n (we
will make this invariant explicit in §6), before diving into the code.

The physical state of !n . The RDCSS implementation guarantees that at any point in time, at most
one RDCSS operation is active. Only once the active operation has been successfully completed can
another pending RDCSS operation be executed. If a thread wants to perform an RDCSS operation
but another operation is already active, then it tries to help complete the active operation before
attempting to perform its own operation again.

Concretely, an RDCSS location !n has two states, inactive and active:
• The inactive state is represented by the physical value inl(n). This indicates that the abstract

value at !n is n, and there is currently no RDCSS operation ongoing.
• The active state is represented by the physical value inr(!descr). The descriptor !descr stores

all the information needed about the active operation that is currently ongoing: it points to a

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

23 / 37

Physical comparison decides Rocq equality

Definition bin_op_eval op v1 v2 :=
if decide (op = EqOp) then

if decide (vals_compare_safe v1 v2) then
Some $ LitV $ LitBool $ bool_decide (v1 = v2)

else
None

else
...

24 / 37

https://coq.inria.fr/

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

25 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

Classification of Zoo values

▶ boolean
▶ integer
▶ mutable block (pointer)
▶ immutable block (tag and fields)
▶ function

26 / 37

https://github.com/clef-men/zoo

Non-deterministic semantics

let x1 = Some ()
let x2 = Some ()
let test1 = x1 == x1 (* true *)
let test2 = x1 == x2 (* false *)

What guarantees when physical equality (1) returns true,
(2) returns false?

27 / 37

Sharing

let test1 = Some 0 == Some 0 (* true *)
let test2 = [0;1] == [0;1] (* true *)

28 / 37

Value representation conflicts

let test1 = Obj.repr false == Obj.repr 0 (* true *)
let test2 = Obj.repr None == Obj.repr 0 (* true *)
let test3 = Obj.repr [] == Obj.repr 0 (* true *)

29 / 37

Sharing + conflicts

type any =
Any : 'a -> any

let test1 = Any false == Any 0 (* true *)
let test2 = Any None == Any 0 (* true *)
let test3 = Any [] == Any 0 (* true *)

30 / 37

Treiber stack

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)

31 / 37

Treiber stack specification

Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs,

stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof.
...

Qed.

32 / 37

Unsharing

let x = Some 0
let test = x == x (* false *)

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

33 / 37

Eio.Rcfd
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable ops: int [@atomic]; mutable state: state [@atomic] }

let make fd = { ops= 0; state= Open fd }

let closed = Closing (fun () -> ())
let close t =

match t.state with
| Closing _ -> false
| Open fd as prev ->

let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [%atomic.loc t.state] prev next then

...
else

false
34 / 37

Generative constructors

type 'a list =
| Nil
| Cons of 'a * 'a list [@generative]

type state =
| Open of Unix.file_descr [@generative] [@zoo.reveal]
| Closing of (unit -> unit)

35 / 37

Context

Zoo in practice

Zoo features

Physical equality in HeapLang

Physical equality in OCaml

Future work

36 / 37

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md

Future work

▶ exceptions
▶ algebraic effects
▶ modules & functors
▶ weak memory
▶ coupling with semi-automated verification

37 / 37

Thank you for your attention!

	Context
	in practice
	features
	Physical equality in HeapLang
	Physical equality in OCaml
	Future work

