
Verifying Tail Modulo Cons using
Relational Separation Logic

Clément Allain
Gabriel Scherer
François Pottier

INRIA Paris

July 2, 2024

1 / 19

Verifying Tail Modulo Cons using
Relational Separation Logic

Program transformation implemented in the
OCaml compiler by Frédéric Bour, Basile

Clément & Gabriel Scherer.

2 / 19

Verifying Tail Modulo Cons using
Relational Separation Logic

Formalize the transformation and its soundness.

2 / 19

Verifying Tail Modulo Cons using
Relational Separation Logic

Prove soundness using an adequate Iris binary
logical relation à la Simuliris.

2 / 19

The map problem: natural implementation

let rec map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: map f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

Stack overflow during evaluation (looping recursion ?).

3 / 19

The map problem: natural implementation

x xs

f x xs

f x map f xs

f x map f xs

4 / 19

The map problem: APS implementation

let rec map ys f xs =
match xs with
| [] →

List.rev ys
| x :: xs →

let y = f x in
map (y :: ys) f xs

let map xs =
map [] f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

5 / 19

The map problem: APS implementation

acc x xs

acc f x xs

acc f x xs

6 / 19

The map problem: DPS implementation

acc x xs

acc f x xs

acc f x xs

7 / 19

The map problem: DPS implementation

let rec map_dps dst f xs =
match xs with
| [] →

set_field dst 1 []
| x :: xs →

let y = f x in
let dst’ = y :: [] in
set_field dst 1 dst’ ;
map_dps dst’ f xs

let map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
let dst = y :: [] in
map_dps dst f xs ;
dst

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

8 / 19

The map problem: TMC

let[@tail_mod_cons] rec map f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: map f xs

List.init 250 _000 (fun _ → ())
|> map Fun.id
|> ignore
;;

- : unit = ()

9 / 19

DataLang: syntax
Index ∋ i ::= 0 | 1 | 2
Tag ∋ t
B ∋ b
L ∋ ℓ
F ∋ f
X ∋ x, y
Val ∋ v, w ::= () | i | t | b | ℓ | @f
Expr ∋ e ::= v | x | let x = e1 in e2 | e1 e2

| e1 = e2 | if e0 then e1 else e2
| { t, e1, e2 }
| e1.(e2) | e1.(e2) ← e3

Def ∋ d ::= rec x = e

Prog ∋ p := F fin
⇀ Def

State ∋ σ := L fin
⇀ Val

Config ∋ ρ := Expr × State

10 / 19

DataLang: map

map := rec f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
y :: @map f xs

11 / 19

TMC transformation

es
ξ⇝

dir
et ds

ξ⇝
dir

dt

(edst, eidx , es)
ξ⇝

dps
et ds

ξ⇝
dps

dt

ps ⇝ pt

12 / 19

TMC transformation: map

map := rec f xs =
match xs with
| [] →

[]
| x :: xs →

let y = f x in
let dst = y :: ! in
@map_dps dst 2 f xs ;
dst

map_dps := rec dst idx f xs =
match xs with
| [] →

dst .(idx) ← []
| x :: xs →

let y = f x in
let dst’ = y :: ! in
dst .(idx) ← dst’ ;
@map_dps dst’ 2 f xs

13 / 19

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ⊒ pt program pt refines program pt

(termination-preserving refinement)

14 / 19

Transformation soundness

ps ⇝ pt program ps transforms into program pt

⇓

ps ≳ pt program pt simulates program ps

(relational separation logic, Simuliris)

⇓

ps ⊒ pt program pt refines program pt

(termination-preserving refinement)

14 / 19

Specification in separation logic

{???}
@map vs ≳ @map vt

{???}

{???}
@map vs ≳ @map_dps ℓ i vt

{???}

15 / 19

Direct transformation

{vs ≈ vt}
@map vs ≳ @map vt

{ws, wt. ws ≈ wt}

RelDir (Simuliris)

f ∈ dom(ps)
vs ≈ vt

∀ ws, wt. ws ≈ wt −∗ Φ(ws, wt)
@f vs ≳ @f vt [Φ]

16 / 19

DPS transformation

{vs ≈ vt ∗ (ℓ + i) %→t #}
@map vs ≳ @map_dps ℓ i vt

{ws, (). ∃ wt. ws ≈ wt ∗ (ℓ + i) %→t wt}

RelDPS
ξ[f] = fdps

vs ≈ vt

ℓ %→t v
∀ ws, wt. ws ≈ wt −∗ ℓ %→t v[i %→ wt] −∗ Φ(ws, ())

@f vs ≳ @fdps ℓ i vt [Φ]

RelProtocol
X(es, et, Ψ) ∀ e′

s, e′
t. Ψ(e′

s, e′
t) −∗ e′

s ≳ e′
t 〈X〉 [Φ]

es ≳ et 〈X〉 [Φ]

17 / 19

Proof sketch

fs ≈ ft xss ≈ xst

@map fs xss ≳ @map ft xst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

@map fs xss ≳ @map ft xst

RelPure
es

ps−→
pure

e′
s et

pt−→
pure

e′
t e′

s ≳ e′
t [Φ]

es ≳ et [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

match xss with
| [] →

[]
| x :: xs’ →

let y = fs x in
y :: @map fs xs’

≳

match xst with
| [] →

[]
| x :: xs’ →

let y = ft x in
let dst = y :: ! in
@map_dps dst 2 ft xs’ ;
dst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

match xss with
| [] →

[]
| x :: xs’ →

let y = fs x in
y :: @map fs xs’

≳

match xst with
| [] →

[]
| x :: xs’ →

let y = ft x in
let dst = y :: ! in
@map_dps dst 2 ft xs’ ;
dst

RelMatch
es0 ≳ et0 {≈}
es1 ≳ et1 [Φ]

∀ xs, xt, xss, xst. xs ≈ xt −∗ xss ≈ xst −∗ es2 ≳ et2 [Φ]
match es0 with
| [] → es1
| xs :: xss → es2

≳
match et0 with
| [] → et1
| xt :: xst → et2

[Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

[] ≳ []

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

let y = fs xs in
y :: @map fs xs′

s ≳

let y = ft xt in
let dst = y :: ! in
@map_dps dst 2 ft xs′

t ;
dst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

let y = fs xs in
y :: @map fs xs′

s ≳

let y = ft xt in
let dst = y :: ! in
@map_dps dst 2 ft xs′

t ;
dst

RelvCallSimilar
fs ≈ ft xs ≈ xt

fs xs ≳ ft xt {≈}

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

let y = ys in
y :: @map fs xs′

s ≳

let y = yt in
let dst = y :: ! in
@map_dps dst 2 ft xs′

t ;
dst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ys :: @map fs xs′
s ≳

let dst = yt :: ! in
@map_dps dst 2 ft xs′

t ;
dst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ys :: @map fs xs′
s ≳

let dst = yt :: ! in
@map_dps dst 2 ft xs′

t ;
dst

RelTgtCons
∀ ℓ. ℓ)→t (CONS, v1, v2) −∗ es ≳ ℓ [Φ]

es ≳ v1 :: v2 [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ℓt)→t (CONS, yt,")

ys :: @map fs xs′
s ≳

let dst = ℓt in
@map_dps dst 2 ft xs′

t ;
dst

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ℓt)→t (CONS, yt,")

ys :: @map fs xs′
s ≳

let dst = ℓt in
@map_dps dst 2 ft xs′

t ;
dst

RelTgtPure
et

pt−→
pure

e′
t es ≳ e′

t [Φ]

es ≳ et [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ℓt)→t (CONS, yt,")

ys :: @map fs xs′
s ≳

@map_dps ℓt 2 ft xs′
t ;

ℓt

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

ℓt)→t (CONS, yt,")

ys :: yss ≳
@map_dps ℓt 2 ft xs′

t ;
ℓt

RelDPS2
ξ[f] = fdps

vs ≈ vt

ℓ)→t (t, v1, v2)
∀ ws, wt. ws ≈ wt −∗ ℓ)→t (t, v1, wt) −∗ Φ(ws, ())

@f vs ≳ @fdps ℓ 2 vt [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓt)→t (CONS, yt, yst)

ys :: yss ≳ () ; ℓt

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓt)→t (CONS, yt, yst)

ys :: yss ≳ ℓt

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓt)→t (CONS, yt, yst)

ℓs ≳ ℓt

RelSrcCons
∀ ℓ. ℓ)→s (CONS, v1, v2) −∗ ℓ ≳ et [Φ]

v1 :: v2 ≳ et [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓt)→t (CONS, yt, yst)

ℓs)→s (CONS, ys, yss)

ℓs ≳ ℓt

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓt)→t (CONS, yt, yst)

ℓs)→s (CONS, ys, yss)

ℓs ≳ ℓt

RelBijInsert
ℓs)→s vs

ℓt)→t vt

vs ≈ vt

ℓs ≈ ℓt −∗ es ≳ et [Φ]
es ≳ et [Φ]

18 / 19

Proof sketch

fs ≈ ft xss ≈ xst

xs ≈ xt xs′
s ≈ xs′

t

ys ≈ yt

yss ≈ yst

ℓs ≈ ℓt

ℓs ≳ ℓt

18 / 19

Concluding remarks

◮ The real proof deals with the abstract
relational transformation.

◮ Details regarding the undetermined evaluation
order of constructors were eluded.

◮ Other program transformations verified using
protocols: APS, inlining.

19 / 19

Thank you for your attention!

Simulation

sim-bodyX :=

λ sim. λ sim-inner. λ (Φ, es, et). ∀ σs, σs. I(σs, σt) −∗ |⇛

!

"

###########$

1© I(σs, σt) ∗ Φ(es, et)
2© I(σs, σt) ∗ strongly-stuckps

(es) ∗ strongly-stuckpt
(es)

3© ∃ e′
s, σ′

s. (es, σs) ps−→
+

(e′
s, σ′

s) ∗ I(σ′
s, σt) ∗ sim-inner(Φ, e′

s, et)
4© reduciblept (et, σt) ∗ ∀ e′

t, σ′
t. (et, σt) pt−→ (e′

t, σ′
t) −∗ |⇛

!
%

A© I(σs, σ′
t) ∗ sim-inner(Φ, es, e′

t)
B© ∃ e′

s, σ′
s. (es, σs) ps−→

+
(e′

s, σ′
s) ∗

I(σ′
s, σ′

t) ∗ sim(Φ, e′
s, e′

t)
5© ∃ Ks, e′

s, Kt, e′
t, Ψ.

es = Ks[e′
s] ∗ et = Kt[e′

t] ∗ X(Ψ, e′
s, e′

t) ∗ I(σs, σt) ∗
∀ e′′

s , e′′
t . Ψ(e′′

s , e′′
t) −∗ sim-inner(Φ, Ks[e′′

s], Kt[e′′
t])

sim-innerX := λ sim. µ sim-inner. sim-bodyX(sim, sim-inner)
simX := ν sim. sim-innerX(sim)

es ≳ et 〈X〉 [Φ] := simX(Φ, es, et)

es ≳ et 〈X〉 {Φ} := es ≳ et 〈X〉
&
λ(e′

s, e′
t). ∃ vs, vt. e′

s = vs ∗ e′
t = vt ∗ Φ(vs, vt)

'

1 / 2

TMC protocol

Xdir(Ψ, es, et) := ∃ f, vs, vt.
f ∈ dom(ps) ∗
es = @f vs ∗ et = @f vt ∗ vs ≈ vt ∗
∀ v′

s, v′
t. v′

s ≈ v′
t −∗ Ψ(v′

s, v′
t)

XDPS(Ψ, es, et) := ∃ f, fdps, vs, ℓ, i, vt.
f ∈ dom(ps) ∗ ξ[f] = fdps ∗
es = @f vs ∗ et = @fdps ((ℓ, i), vt) ∗ vs ≈ vt ∗
(ℓ + i))→ " ∗
∀ v′

s, v′
t. (ℓ + i))→ v′

t ∗ v′
s ≈ v′

t −∗ Ψ(v′
s, ())

XTMC := Xdir ⊔ XDPS

2 / 2

