
Zoo:
A framework for the verification
of concurrent OCaml 5 programs

using separation logic

Clément Allain
Gabriel Scherer

March 21, 2025

1 / 52

https://github.com/clef-men/zoo

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

2 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Context

Verification of fine-grained concurrent OCaml 5 programs

Saturn
Kcas

3 / 52

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/kcas

In search of a verification language

language concurrency Iris ≃ OCaml translation automation

Cameleer ⌢ ⌢ ⌣ ⌣ ⌣
coq_of_ocaml ⌢ ⌢ ⌣ ⌣ ⌢
CFML ⌢ ⌢ ⌣ ⌣ ⌢
Osiris ⌢ ⌣ ⌣ ⌣ ⌢
HeapLang ⌣ ⌣ ⌢ ⌢ À
Zoo ⌣ ⌣ ⌣ ⌣ À

4 / 52

https://iris-project.org/
https://mariojppereira.github.io/cameleer.html
https://gitlab.inria.fr/charguer/cfml2
https://gitlab.inria.fr/fpottier/osiris
https://gitlab.mpi-sws.org/iris/iris/blob/master/docs/heap_lang.md
https://github.com/clef-men/zoo

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

5 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Zoo in practice

ocaml2zoo−→ Zoo

6 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

saturn
dune
queue.ml
queue.mli

=⇒

theories
domainslib

scheduler__code.v
scheduler__types.v

saturn
queue__code.v
queue__types.v

$ ocaml2zoo project theories

7 / 52

https://github.com/clef-men/zoo

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

=⇒

theories
domainslib

scheduler__code.v
scheduler__types.v

$ ocaml2zoo project theories

8 / 52

https://github.com/clef-men/zoo

Zoo in practice

Lemma stack_push_spec_seq t ι v :
{{{

stack_model t vs
}}}

stack_push t v
{{{

RET ();
stack_model t (v :: vs)

}}}.
Proof.

...
Qed.

Lemma stack_push_spec_atomic t ι v :
<<<

stack_inv t ι
| ∀∀ vs,

stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof.
...

Qed.

9 / 52

https://github.com/clef-men/zoo

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

10 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Algebraic data types

type 'a t =
| Nil
| Cons of 'a * 'a t

let rec map fn t =
match t with
| Nil -> Nil
| Cons (x, t) ->

let y = fn x in
Cons (y, map fn t)

Notation "'Nil'" := (
in_type "t" 0

)(in custom zoo_tag).
Notation "'Cons'" := (

in_type "t" 1
)(in custom zoo_tag).

Definition map : val :=
rec: "map" "fn" "t" =>

match: "t" with
| Nil => §Nil
| Cons "x" "t" =>

let: "y" := "fn" "x" in
‘Cons("y", "map" "fn" "t")

end.

11 / 52

Records

type 'a t =
{ mutable f1: 'a;

mutable f2: 'a;
}

let swap t =
let f1 = t.f1 in
t.f1 <- t.f2 ;
t.f2 <- f1

Notation "'f1'" := (
in_type "t" 0

)(in custom zoo_field).
Notation "'f2'" := (

in_type "t" 1
)(in custom zoo_field).

Definition swap : val :=
fun: "t" =>

let: "f1" := "t".{f1} in
"t" <-{f1} "t".{f2} ;;
"t" <-{f2} "f1".

12 / 52

Inline records

type 'a node =
| Null
| Node of

{ mutable next: 'a node;
mutable data: 'a;

}

Notation "'Null'" := (
in_type "node" 0

)(in custom zoo_tag).
Notation "'Node'" := (

in_type "node" 1
)(in custom zoo_tag).

Notation "'next'" := (
in_type "node.Node" 0

)(in custom zoo_field).
Notation "'data'" := (

in_type "node.Node" 1
)(in custom zoo_field).

13 / 52

Mutually recursive functions

let rec f x = g x
and g x = f x

Definition f_g := (
recs: "f" "x" => "g" "x"
and: "g" "x" => "f" "x"

)%zoo_recs.

(* boilerplate *)

Definition f := ValRecs 0 f_g.
Definition g := ValRecs 1 f_g.

Instance : AsValRecs' f 0 f_g [f;g].
Proof. done. Qed.
Instance : AsValRecs' g 1 f_g [f;g].
Proof. done. Qed.

14 / 52

Concurrency

Atomic.set e1 e2 e1 <- e2
Atomic.exchange e1 e2 Xchg e1.[contents] e2
Atomic.compare_and_set e1 e2 e3 CAS e1.[contents] e2 e3
Atomic.fetch_and_add e1 e2 FAA e1.[contents] e2

type t = { ...; mutable f : τ [@atomic]; ... }
Atomic.Loc.exchange [%atomic.loc e1.f] e2 Xchg e1.[f] e2
Atomic.Loc.compare_and_set [%atomic.loc e1.f] e2 e3 CAS e1.[f] e2 e3
Atomic.Loc.fetch_and_add [%atomic.loc e1.f] e2 FAA e1.[f] e2

https://github.com/ocaml/ocaml/pull/13404
https://github.com/ocaml/ocaml/pull/13707

15 / 52

https://github.com/ocaml/ocaml/pull/13404
https://github.com/ocaml/ocaml/pull/13707

Standard library

▶ Array
▶ Dynarray
▶ List
▶ Stack
▶ Queue
▶ Deque

▶ Domain
▶ Atomic_array
▶ Mutex
▶ Condition

16 / 52

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

17 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Classification of Zoo values

▶ boolean
▶ integer
▶ mutable block (pointer)
▶ immutable block (tag and fields)
▶ function

18 / 52

https://github.com/clef-men/zoo

Non-deterministic semantics

let x1 = Some ()
let x2 = Some ()
let test1 = x1 == x1 (* true *)
let test2 = x1 == x2 (* false *)

What guarantees when physical equality (1) returns true,
(2) returns false?

19 / 52

OCaml’s informal specification

e1 == e2 tests for physical equality of e1 and e2.

On mutable types such as references, arrays, byte
sequences, records with mutable fields and objects
with mutable instance variables, e1 == e2 is true
if and only if physical modification of e1 also
affects e2.

On non-mutable types, the behavior of (==) is
implementation-dependent; however, it is guaranteed
that e1 == e2 implies compare e1 e2 = 0.

20 / 52

Treiber stack

type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)

21 / 52

Treiber stack specification

Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs,

stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof.
...

Qed.

22 / 52

OCaml’s informal specification is too imprecise

type 'a t =
'a ref list Atomic.t

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)

23 / 52

Sharing

let test1 = Some 0 == Some 0 (* true *)
let test2 = [0;1] == [0;1] (* true *)

24 / 52

Value representation conflicts

let test1 = Obj.repr false == Obj.repr 0 (* true *)
let test2 = Obj.repr None == Obj.repr 0 (* true *)
let test3 = Obj.repr [] == Obj.repr 0 (* true *)

25 / 52

Sharing + conflicts

type any =
Any : 'a -> any

let test1 = Any false == Any 0 (* true *)
let test2 = Any None == Any 0 (* true *)
let test3 = Any [] == Any 0 (* true *)

26 / 52

Back to Treiber stack

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)

27 / 52

Jourdan’s physical equality

Chapter 9. Data Structures with Sharing in Coq

purposes: first, it provides a fast mechanism for comparing values using physical equal-
ity or hash equality. Second, it is easy to use hash-consing to build fast map structures
using hash-consed values as keys. Finally, using such maps it is possible to implement
memoization.
This assessment led us, in collaboration with Braibant and Monniaux [BJM13, BJM14],

to the study of several methods to implement maximal sharing (i.e., hash-consing) and
memoization in formally verified Coq programs. We used the case study of binary decision
diagrams (BDDs), which are one of the well known uses of the hash-consing technique. We
tried different approaches and compared them, as reported in the following sections. These
ideas are not currently implemented in Verasco, but we believe some of them (especially the
smart and smart+uid approaches described in Section 9.4) could be adapted to many of
its data structures.

9.1. Safe Physical Equality in Coq: the physEq
Approach

The obvious way of introducing physical equality in Coq is to declare it as an axiom in the
development, state that physical equality implies Leibniz equality, and ask the extraction
mechanism to extract it to OCaml’s physical equality:

Parameter physEq: ∀ A:Type, A -> A -> bool.
Axiom physEq_correct: ∀ (A:Type) (x y:A), physEq x y = true -> x = y.
Extract Constant physEq => "(==)".

However, this appears to be unsound. Let a and b be two physically different copies of
the same value. Then we have physEq a a = true and a = b, using Coq’s Leibniz equality.
Thus, we deduce, in Coq’s logic, that physEq a b = true, which is wrong.
This unsoundness is of a particular kind: in fact, the axioms we postulate are not in-

consistent: they can be easily instantiated by posing physEq x y = false. However, the
OCaml term (==) is not a valid extraction for physEq, and using it would make it possible
to prove properties on programs that will become false after extraction.
In order to circumvent this problem, we propose to avoid having physical equality in the

language. Instead, we provide a term that enables us to use physical equality, just like a
church Boolean would enable us to use a Boolean without manipulating a term of type bool:
that is, we expose a function, taking as parameter the values of each branch of the test of
physical equality. In order to make sure no use of physical equality is harmful, we add the
condition, as an additional dependent parameter in Prop, that both branches are actually
equal in the case of physical equality. Thus, the type of physEq becomes:

physEq: ∀ {A B:Type} (x y:A) (eq neq:B) (H:x = y -> eq = neq), B.

Note that, as is, physEq is not useful, because both branches are always executed. There
is a simple solution: delaying the evaluation of branches by hiding them behind a function
taking the unit value as parameter:

physEq: ∀ {A B:Type} (x y:A) (eq neq:unit -> B)
(H:x = y -> eq tt = neq tt), B.

This declaration is extracted to a simple OCaml term:

Extract Constant physEq =>
"(fun x y eq neq -> if x == y then eq () else neq ())".

182

28 / 52

Eio.Rcfd
type state = Open of Unix.file_descr | Closing of (unit -> unit)
type t = { mutable ops: int [@atomic]; mutable state: state [@atomic] }

let make fd = { ops= 0; state= Open fd }

let closed = Closing (fun () -> ())
let close t =

match t.state with
| Closing _ -> false
| Open fd as prev ->

let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [%atomic.loc t.state] prev next then

...
else

false
29 / 52

Unsharing

let x = Some 0
let test = x == x (* false *)

Clément Allain
Impossible! Unique identity.

Armaël Guéneau
This would be unsharing.

Vincent Laviron
It’s possible!

30 / 52

Back to Eio.Rcfd

let closed = Closing (fun () -> ())
let close t =

match t.state with
| Closing _ -> false
| Open fd as prev ->

let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [%atomic.loc t.state] prev next then

...
else

false

31 / 52

Generative constructors

type 'a list =
| Nil
| Cons of 'a * 'a list [@generative]

type state =
| Open of Unix.file_descr [@generative] [@zoo.reveal]
| Closing of (unit -> unit)

32 / 52

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

33 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Specification

Axiom structeq_spec : ∀ `{zoo_G : !ZooG Σ} {v1 v2} footprint,
val_traversable footprint v1 →
val_traversable footprint v2 →
{{{

structeq_footprint footprint
}}}

v1 = v2
{{{ b,

RET #b;
structeq_footprint footprint ∗
⌜(if b then val_structeq else val_structneq) footprint v1 v2⌝

}}}.

34 / 52

Specification for abstract values

Lemma structeq_spec_abstract `{zoo_G : !ZooG Σ} v1 v2 :
val_abstract v1 →
val_abstract v2 →
{{{

True
}}}

v1 = v2
{{{ b,

RET #b;
⌜(if b then (≈) else (̸≈)) v1 v2⌝

}}}
Proof.

...
Qed.

35 / 52

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

36 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Kcas: software transactional memory for OCaml

let a = Loc.make 10 in
let b = Loc.make 52 in
let x = Loc.make 0 in

let tx ~xt =
let a = Xt.get ~xt a in
let b = Xt.get ~xt b in
Xt.set ~xt x (b - a)

in

Xt.commit { tx }

Vesa Karvonen
The main author of Kcas

37 / 52

https://github.com/ocaml-multicore/kcas
https://github.com/ocaml-multicore/kcas

Kcas: software transactional memory for OCaml

let a = Loc.make 10 in
let b = Loc.make 52 in
let x = Loc.make 0 in

let tx ~xt =
let a = Xt.get ~xt a in
let b = Xt.get ~xt b in
Xt.set ~xt x (b - a)

in

Xt.commit { tx }

Vesa Karvonen
The main author of Kcas

37 / 52

https://github.com/ocaml-multicore/kcas
https://github.com/ocaml-multicore/kcas

Kcas: software transactional memory for OCaml

let a = Loc.make 10 in
let b = Loc.make 52 in
let x = Loc.make 0 in

let tx ~xt =
let a = Xt.get ~xt a in
let b = Xt.get ~xt b in
Xt.set ~xt x (b - a)

in

Xt.commit { tx }

Vesa Karvonen
The main author of Kcas

37 / 52

https://github.com/ocaml-multicore/kcas
https://github.com/ocaml-multicore/kcas

Kcas: software transactional memory for OCaml

type ('k, 'v) cache =
{ space: int Loc.t;

table: ('k, 'k Dllist.Xt.node * 'v) Hashtbl.Xt.t;
order: 'k Dllist.Xt.t;

}

38 / 52

https://github.com/ocaml-multicore/kcas

MCAS

let a = Loc.make 10 in
let b = Loc.make 52 in
let x = Loc.make 0 in

let a = Xt.get ~xt a in
let b = Xt.get ~xt b in
Xt.set ~xt x (b - a)

CAS (a, 10, 10)
CAS (b, 52, 52)
CAS (x, 0, 42)

39 / 52

MCAS specification

{∗
ℓ∈ℓs

loc-inv ℓ ι

}
〈
∀vs. ∗

ℓ,v∈ℓs,vs

ℓ ↣ v

〉
mcas ℓs befores afters, ↑ ι〈

∃b.
if b then vs = befores ∗ ∗

ℓ,v∈ℓs,afters

ℓ ↣ v

else ∃i . vs i ̸= befores i ∗ ∗
ℓ,v∈ℓs,vs

ℓ ↣ v

〉

{ b.True }

40 / 52

MCAS specification: taking physical equality seriously

{∗
ℓ∈ℓs

loc-inv ℓ ι

}
〈
∀vs. ∗

ℓ,v∈ℓs,vs

ℓ ↣ v

〉
mcas ℓs befores afters, ↑ ι〈

∃b.
if b then vs ≈ befores ∗ ∗

ℓ,v∈ℓs,afters

ℓ ↣ v

else ∃i . vs i ̸≈ befores i ∗ ∗
ℓ,v∈ℓs,vs

ℓ ↣ v

〉

{ b.True }

41 / 52

MCAS specification: read-only locations

{∗
ℓ∈ℓs

loc-inv ℓ ι ∗∗
ℓ∈ℓs

loc-inv ℓ ι

}
〈
∀ws, vs. ∗

ℓ,v∈ℓs,ws

ℓ ↣ v ∗ ∗
ℓ,v∈ℓs,vs

ℓ ↣ v

〉
mcas ℓs ℓs befores afters, ↑ ι〈

∃b. ∗
ℓ,v∈ℓs,ws

ℓ ↣ v ∗
if b then vs ≈ befores ∗ ∗

ℓ,v∈ℓs,afters

ℓ ↣ v

else (ℓs ̸= [] ∨ ∃i . vs i ̸≈ befores i) ∗ ∗
ℓ,v∈ℓs,vs

ℓ ↣ v

〉

{ b.True }

42 / 52

MCAS specification: relaxed memory

{
⊒ W ∗∗

ℓ∈ℓs

loc-inv ℓ ι

}
〈
∀vs,Vs. ∗

ℓ,v ,V∈ℓs,vs,Vs

ℓ ↣ (v ,V)

〉
mcas ℓs befores afters, ↑ ι〈

∃b.
if b then vs ≈ befores ∗ ∗

ℓ,v ,V∈ℓs,afters,Vs

ℓ ↣ (v ,V ⊔W)

else ∃i . vs i ̸≈ befores i ∗ ∗
ℓ,v ,V∈ℓs,vs,Vs

ℓ ↣ (v ,V)

〉
{
b. if b then ∗

V∈Vs

⊒ V else True

}
43 / 52

MCAS algorithm: Harris, Fraser & Pratt (2002)

44 / 52

Verified RDCSS by Jung et al.

45

The Future is Ours: Prophecy Variables in Separation Logic

RALF JUNG, MPI-SWS, Germany
RODOLPHE LEPIGRE, MPI-SWS, Germany
GAURAV PARTHASARATHY, ETH Zurich, Switzerland and MPI-SWS, Germany
MARIANNA RAPOPORT, University of Waterloo, Canada and MPI-SWS, Germany
AMIN TIMANY, imec-DistriNet, KU Leuven, Belgium
DEREK DREYER, MPI-SWS, Germany
BART JACOBS, imec-DistriNet, KU Leuven, Belgium

Early in the development of Hoare logic, Owicki and Gries introduced auxiliary variables as a way of encoding
information about the history of a program’s execution that is useful for verifying its correctness. Over a
decade later, Abadi and Lamport observed that it is sometimes also necessary to know in advance what a
program will do in the future. To address this need, they proposed prophecy variables, originally as a proof
technique for re!nement mappings between state machines. However, despite the fact that prophecy variables
are a clearly useful reasoning mechanism, there is (surprisingly) almost no work that attempts to integrate
them into Hoare logic. In this paper, we present the !rst account of prophecy variables in a Hoare-style
program logic that is "exible enough to verify logical atomicity (a relative of linearizability) for classic examples
from the concurrency literature like RDCSS and the Herlihy-Wing queue. Our account is formalized in the Iris
framework for separation logic in Coq. It makes essential use of ownership to encode the exclusive right to
resolve a prophecy, which in turn lets us enforce soundness of prophecies with a very simple set of proof rules.

CCS Concepts: • Theory of computation → Separation logic; Programming logic; Operational semantics.

Additional Key Words and Phrases: Prophecy variables, separation logic, logical atomicity, linearizability, Iris

ACM Reference Format:
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart
Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation Logic. Proc. ACM Program. Lang. 4, POPL,
Article 45 (January 2020), 32 pages. https://doi.org/10.1145/3371113

1 INTRODUCTION
When proving correctness of a program P , it is often easier and more natural to reason forward—that
is, to start at the beginning of P ’s execution and reason about how it behaves as it executes. But
sometimes strictly forward reasoning is not good enough: when reasoning about a program step s0,
it may be necessary to “peek into the future” and know ahead of time what will happen at some
future program step s1.

Authors’ addresses: Ralf Jung, MPI-SWS, Saarland Informatics Campus, Germany, jung@mpi-sws.org; Rodolphe Lepigre,
MPI-SWS, Saarland Informatics Campus, Germany, lepigre@mpi-sws.org; Gaurav Parthasarathy, Department of Computer
Science, ETH Zurich, Switzerland and MPI-SWS, Germany, gaurav.parthasarathy@inf.ethz.ch; Marianna Rapoport, Univer-
sity of Waterloo, Canada and MPI-SWS, Germany, mrapoport@uwaterloo.ca; Amin Timany, imec-DistriNet, KU Leuven, Bel-
gium, amin.timany@cs.kuleuven.be; Derek Dreyer, MPI-SWS, Saarland Informatics Campus, Germany, dreyer@mpi-sws.org;
Bart Jacobs, imec-DistriNet, KU Leuven, Belgium, bart.jacobs@cs.kuleuven.be.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and
the full citation on the !rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/1-ART45
https://doi.org/10.1145/3371113

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 45. Publication date: January 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

45 / 52

MCAS algorithm: Guerraoui, Kogan, Marathe & Zablotchi (2020)

E�cient Multi-Word Compare and Swap
Rachid Guerraoui
EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Alex Kogan
Oracle Labs, Burlington, MA, USA
alex.kogan@oracle.com

Virendra J. Marathe
Oracle Labs, Burlinton, MA, USA
virendra.marathe@oracle.com

Igor Zablotchi1
EPFL, Lausanne, Switzerland
igor.zablotchi@epfl.ch

Abstract
Atomic lock-free multi-word compare-and-swap (MCAS) is a powerful tool for designing concurrent
algorithms. Yet, its widespread usage has been limited because lock-free implementations of
MCAS make heavy use of expensive compare-and-swap (CAS) instructions. Existing MCAS
implementations indeed use at least 2k + 1 CASes per k-CAS. This leads to the natural desire to
minimize the number of CASes required to implement MCAS.

We first prove in this paper that it is impossible to “pack” the information required to perform
a k-word CAS (k-CAS) in less than k locations to be CASed. Then we present the first algorithm
that requires k + 1 CASes per call to k-CAS in the common uncontended case. We implement our
algorithm and show that it outperforms a state-of-the-art baseline in a variety of benchmarks in
most considered workloads. We also present a durably linearizable (persistent memory friendly)
version of our MCAS algorithm using only 2 persistence fences per call, while still only requiring
k + 1 CASes per k-CAS.

2012 ACM Subject Classification Theory of computation æ Concurrent algorithms

Keywords and phrases lock-free, multi-word compare-and-swap, persistent memory

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.4

Related Version https://arxiv.org/abs/2008.02527

Funding This work has been supported in part by the European Research Council (ERC) Grant
339539 (AOC).

1 Introduction

Compare-and-swap (CAS) is a foundational primitive used pervasively in concurrent algo-
rithms on shared memory systems. In particular, it is used extensively in lock-free algorithms,
which avoid the pitfalls of blocking synchronization (e.g., that employs locks) and typically de-
liver more scalable performance on multicore systems. CAS conditionally updates a memory
word such that a new value is written if and only if the old value in that word matches some ex-
pected value. CAS has been shown to be universal, and thus can implement any shared object
in a non-blocking manner [32]. This primitive (or the similar load-linked/store-conditional
(LL/SC)) is nowadays provided by nearly every modern architecture.

1 This work was done when the author was an intern at Oracle Labs.

© Rachid Guerraoui, Alex Kogan, Virendra J. Marathe, and Igor Zablotchi;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

46 / 52

MCAS location

ℓ ↣ v1 or v2

ℓ v1 v2 κ

47 / 52

Finished MCAS

ℓ ↣ v1

ℓ v1 v1 κ

B

ℓ ↣ v2

ℓ v2 v2 κ

A

48 / 52

Undetermined MCAS

ℓ ↣ v1

ℓ v1 v2 κ

U

49 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 3 2 κ

U

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 3 2 κ

U

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 3 2 κ

U

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 3 2 κ

A

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

2 2 κ 3 2 κ

A

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

2 2 κ 2 2 κ

A

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 0 2 κ

U

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 2 κ 0 2 κ

B

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 1 κ 0 2 κ

B

50 / 52

MCAS algorithm

ℓ1 1 1 κ1

A

ℓ2 3 3 κ2

A

1 1 κ 0 0 κ

B

50 / 52

Introduction

Zoo in practice

Zoo features

Physical equality

Structural equality

Specimen: Kcas (ongoing work)

Future work

51 / 52

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/kcas

Coupling with semi-automated verification (Gospel)

GOSPEL — Providing OCaml
with a Formal Specification Language

Arthur Charguéraud1,2, Jean-Christophe Filliâtre3,1,
Cláudio Lourenço3,1, and Mário Pereira4

1 Inria
2 Université de Strasbourg, CNRS, ICube

3 Lab. de Recherche en Informatique, Univ. Paris-Sud, CNRS, Orsay, F-91405
4 NOVA LINCS & DI, FCT, Universidade Nova de Lisboa, Portugal

Abstract. This paper introduces GOSPEL, a behavioral specification
language for OCaml. It is designed to enable modular verification of data
structures and algorithms. GOSPEL is a contract-based, strongly typed
language, with a formal semantics defined by means of translation into
Separation Logic. Compared with writing specifications directly in Sepa-
ration Logic, GOSPEL provides a high-level syntax that greatly improves
conciseness and makes it accessible to programmers with no familiarity
with Separation Logic. Although GOSPEL has been developed for speci-
fying OCaml code, we believe that many aspects of its design could apply
to other programming languages. This paper presents the design and se-
mantics of GOSPEL, and reports on its application for the development
of a formally verified library of general-purpose OCaml data structures.

1 Introduction

Functional programming languages are particularly suited for producing formally
verified code. For example, the formally verified C compiler CompCert [26] is
written in the applicative subset common to OCaml and Coq [35]. As another
example, the verified microkernel seL4 [21] features components that are written
and verified in Haskell, and then translated into C. The main reason for this
adequacy is that most functional language constructs directly map to logical
counterparts. In Coq, purely functional programs may be directly viewed as
logical definitions. Thus, writing specifications for a purely functional program
simply amounts to stating a lemma relating input and output values.

Functional programming is not, however, limited to purely applicative pro-
gramming. The use of effectful features such as arrays and mutable records is
necessary to implement efficient data structures and algorithms. For example,
OCaml allows writing clean and concise code for functional and imperative data
structures and algorithms. The OCaml language (excluding its object-oriented
features) provides a straightforward semantics for its constructs that facilitates
the verification process, compared with other languages that pervasively use

This research was partly supported by the French National Research Organization
(project VOCAL ANR-15-CE25-008).

52 / 52

https://ocaml-gospel.github.io/gospel/

Thank you for your attention!

	Introduction
	in practice
	features
	Physical equality
	Structural equality
	Specimen: Kcas (ongoing work)
	Future work

