
Saturn: a library of verified concurrent data structures
for OCaml 5

Clément Allain (INRIA)
Vesa Karvonen (Tarides)
Carine Morel (Tarides)

August 1, 2024

1 Abstract

We present Saturn, a new OCaml 5 library available on opam. Saturn offers a col-
lection of efficient concurrent data structures: stack, queue, skiplist, hash table, work-
stealing deque, etc. It is well tested, benchmarked and in part formally verified.

2 Motivation

Sharing data between multiple threads or cores is a well-known problem. A naive ap-
proach is to take a sequential data structure and protect it with a lock. However, this
approach is often inefficient in terms of performance, as locks introduce significant con-
tention. Additionally, it may not be a sound solution as it can lead to liveness issues
such as deadlock, starvation, and priority inversion.

In contrast, lock-free implementations, which rely on fine-grained synchronization
instead of locks, are typically faster and guarantee system-wide progress. However, they
are also more complex and come with their own set of bugs, such as the ABA problem
(largely mitigated in garbage-collected languages), data races, and unexpected behaviors
due to non-linearizability.

In this context, Saturn provides a collection of standard lock-free data structures,
saving OCaml 5 programmers the trouble of designing their own. Currently, there is
no similar project available for OCaml 5 in opam. Most OCaml 5 developers currently
choose to write their own data structures, which is error-prone and time-consuming.

3 Library design

Saturn aims at covering a wide range of use cases, from simple stacks and queues to
more complex data structures like skiplists and hash tables. More precisely, it currently
features: (A) numerous queues: a queue based on the well-known Michael-Scott queue [3],
a single-producer single-consumer queue, a multiple-producer single-consumer queue and
a bounded queue; (B) a stack based on the Treiber stack [1]; (C) a work-stealing deque;
(D) a bag; (E) a hash table; (F) a skiplist.

Most implementations are based on well-known algorithms. They have been adapted
to work with and take advantage of the OCaml 5 memory model. For instance, we had
to rework the Michael-Scott queue to avoid memory leaks.

Regarding performance, we are working on providing benchmarks for each Sat-
urn’s data structure (see section 4), and significant effort has been dedicated to micro-

1

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://opam.ocaml.org/
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn

optimization. In particular, we worked on (A) preventing false sharing1, (B) adding
fenceless atomic reads when possible, which improves performance on ARM processors,
and (C) avoiding the extra indirection in arrays of atomics to reduce memory consump-
tion. The feedback we produced while optimizing Saturn has highlighted some missing
features in OCaml 5 and led to improvements in upstream OCaml (padded atomics,
CSE bug fixed).

To explore some of these optimizations, we use unsafe features of the language (e.g.,
Obj.magic). Although we design our code to be memory-safe under regular use (e.g. only
one domain can push at any given time in a single-consumer single-producer queue), we
cannot offer the same level of guarantee as with the standard implementations. Conse-
quently, some of Saturn’s data structures have two versions: (1) a version that does
not use any unsafe features of OCaml and (2) an optimized version. While most users
should find the regular version efficient enough for their needs, adventurous users may
prefer the optimized version, provided they encapsulate it correctly and verify their code
somehow.

4 Benchmarks

As we are still in the experimental phase, we provide rough preliminary numbers to give
an idea of the library performance. The following tables show the throughput of various
queues and stacks implementations. The queue implementations benchmarked are: (1)
the Stdlib queue (with one domain only), (2) the Stdlib queue protected with a mutex,
(3) the lock-free Michael-Scott queue from Saturn (safe version), (4) a Michael-Scott
two-stack-based queue (currently in this PR in Saturn). The stack implementations
benchmarked are (1) the Stdlib stack (with one domain only), (2) the Stdlib stack
protected with a mutex, (3) a concurrent stack implemented with an atomic list, (4) a
lock-free Treiber stack from Saturn. The tests were run on an Intel i7-1270P (4P+8E
cores) and an Apple M3 Max (6P+6P+4E cores) using OCaml 5.2.0 (see this repository
if you want to run your own benchmarks).

Queue Intel Apple
Stdlib 61 M/s 64 M/s

Stdlib + mutex 24 M/s 19 M/s
Michael-Scott 22 M/s 32 M/s

Two-stack 37 M/s 56 M/s

Stack Intel Apple
Stdlib 66 M/s 72 M/s

Stdlib + mutex 24 M/s 24 M/s
Atomic list 52 M/s 66 M/s

Saturn Treiber 47 M/s 67 M/s

Table 1: Single domain benchmarks

There are several insights to be drawn from these results, but we will highlight a few
key points. Firstly, for sequential programs, the Stdlib queue and stack are the fastest
implementations as the concurrent implementations add significant overhead. However,
the Saturn implementations consistently outperform the Stdlib ones protected with a
single lock, even under low contention. Finally, the concurrent stack implemented with
an atomic list performs comparably to the Treiber stack2 from Saturn. In cases where a
simple enough implementation exists, one might wonder why to use Saturn data struc-
tures instead of writing it oneself. However, even the atomic-list-based stack is optimized
through (a) the use of make_contended to prevent false sharing, and (b) a backoff mecha-
nism to reduce contention. Without these seemingly small optimizations, the atomic list
implementation has a throughput of around 10 M/s regardless of contention (on the Intel

1False sharing occurs when different domains access different data items contained in the same cache
line, forcing unnecessary synchronization. To prevent this, these data must be padded to ensure they
are not in the same cache line.

2The Treiber stack is essentially a well-optimized atomic list.

2

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml/ocaml/pull/12212
https://github.com/ocaml/ocaml/pull/12715
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn/pull/112
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/lyrm/saturn_benchmarks
https://github.com/ocaml-multicore/saturn

machine), which is significantly lower than the Treiber stack’s performance. In addition,
the Saturn library provides thorough testing and could provide even more optimized
implementations in the future.

Config Queue Intel Apple Stack Intel Apple

1 adder,
1 taker

Stdlib + mutex 6.1 14 Stdlib + mutex 2.7 18
Michael-Scott 19 45 Atomic list 66 140

Two-stack 40 110 Treiber 70 128

1 adder,
2 takers

Stdlib + mutex 3.1 3.2 Stdlib + mutex 3.1 4.0
Michael-Scott 18 16 Atomic list 49 113

Two-stack 36 102 Treiber 46 104

2 adders,
1 taker

Stdlib + mutex 5.8 5.8 Stdlib + mutex 6.5 7.7
Michael-Scott 9.9 24 Atomic list 52 120

Two-stack 17 89 Treiber 60 114

2 adders,
2 takers

Stdlib + mutex 3.6 6.0 Stdlib + mutex 3.6 7.7
Michael-Scott 8.2 29 Atomic list 41 107

Two-stack 17 97 Treiber 43 99

Table 2: Benchmarks with multiple domains in parallel (in millions of messages per
second)

5 Tests

In multicore programming, it is essential to test not only the safety of the data structures
but also to verify linearizability3 [2] and lock-freedom4 when expected. To achieve this,
Saturn has been thoroughly tested using two primary tools: DSCheck and STM.

STM is used not only for unit testing but also for linearizability. It automatically
generates random full programs using the provided API—in the case of Saturn, a data
structure. These programs are executed in parallel with two domains and all results
are checked against the postconditions of each function, providing unit testing. Simul-
taneously, STM verifies linearizability by ensuring that all intermediate states can be
explained by a sequential execution of the calls. The STM test for the Treiber stack are
a good example of how simple this is to write.

DSCheck is a model checker based on the DPOR5 algorithm [4]. It is designed to
compute all possible interleavings of instructions between multiple domains and verify
that each one returns the expected result. This is particularly useful for catching elusive
bugs that occur only in specific, rare interleavings. Additionally, DSCheck can be used
to verify that a program is lock-free, as it will fail to terminate if any form of blocking
is present. This is a bit more cumbersome to use than STM (see the DSCheck tests for
the Treiber stack) but it is still a powerful tool. DSCheck implementation has been
optimized6 to make the tests quick enough to be used even on the more complex data
structures of Saturn7.

6 Formal verification

Lock-free algorithms are notoriously difficult to get right. To provide stronger guarantees,
we have verified part of Saturn’s data structures and aim at covering the entire library.

3See section 6 for the definition of linearizability.
4Roughly, lock-freedom guarantees system-wide progress. For more details, see Wikipedia.
5DPOR stands for Dynamic Partial-Order Reduction
6See the PRs about source sets and granular dependency relation.
7See the skiplist DSCheck tests.

3

https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/dscheck
https://github.com/ocaml-multicore/multicoretests
https://github.com/ocaml-multicore/multicoretests
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/multicoretests
https://github.com/ocaml-multicore/saturn/blob/main/test/treiber_stack/stm_treiber_stack.ml
https://github.com/ocaml-multicore/dscheck
https://github.com/ocaml-multicore/dscheck
https://github.com/ocaml-multicore/multicoretests
https://github.com/ocaml-multicore/saturn/blob/main/test/treiber_stack/treiber_stack_dscheck.ml
https://github.com/ocaml-multicore/saturn/blob/main/test/treiber_stack/treiber_stack_dscheck.ml
https://github.com/ocaml-multicore/dscheck
https://github.com/ocaml-multicore/saturn
https://github.com/ocaml-multicore/saturn
https://en.wikipedia.org/wiki/Non-blocking_algorithm#Lock-freedom
https://github.com/ocaml-multicore/dscheck/pull/18
https://github.com/ocaml-multicore/dscheck/pull/22
https://github.com/ocaml-multicore/saturn/blob/main/test/skiplist/stm_skiplist.ml

At the time of writing, this effort essentially comprises concurrent bags, stacks and
queues. One important benefit is that we get formal specifications for verified data
structures.

The standard correctness criterion for concurrent data structures is linearizability [2].
It requires each operation on a data structure to appear to take effect instantaneously at
some point during its execution, called the linearization point, such that the linearization
points of all operations form a coherent sequential history.

To verify this criterion, we rely on Iris [6], a state-of-the-art mechanized concurrent
separation logic. Iris has been successfully used in the past to verify realistic data
structures [10, 11, 9]. All proofs are formalized in Coq and available on github.

Concretely, we first translate the original code from Saturn to a deeply embed-
ded language in Coq. At the time of writing, this translation is manual but could be
automated. It preserves the essence of the implementation, focusing on the most impor-
tant operations and omitting minor aspects not affecting the correctness. For instance,
consider the following push function from the implementation of a concurrent stack:

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not (Atomic.compare_and_set t old new_) then (

Domain.cpu_relax () ;
push t v

)

In Coq, push translates to the stack_push function:

Definition stack_push : val :=
rec: "stack_push" "t" "v" =>

let: "old" := !"t" in
let: "new" := ‘Cons("v", "old") in
ifnot: CAS "t" "old" "new" then (

Yield ;;
"stack_push" "t" "v"

).

The Iris way to formulate linearizability is through logically atomic specifications [5],
which have been proven [8] to be equivalent to linearizability in sequentially consistent
memory models. For instance, the specification of stack_push takes the following form:

{ stack-inv t }
⟨ vs. stack-model t vs ⟩

stack_push t v

⟨ stack-model t (v :: vs) ⟩
{ ().True }

Similarly to Hoare triples, the two assertions inside curly brackets represent the pre-
condition and postcondition for the caller. For this particular operation, the postcondi-
tion is trivial. The stack-inv t precondition is the stack invariant. Intuitively, it asserts
that t is a valid concurrent stack. More precisely, it enforces a set of logical constraints—a
concurrent protocol—that t must respect at all times.

The other two assertions inside angle brackets represent the atomic precondition and
atomic postcondition. They specify the linearization point of the operation: during the
execution of stack_push, the abstract state of the stack held by stack-model is atomically
updated from vs to v :: vs; in other words, v is atomically pushed at the top of the stack.

4

https://iris-project.org/
https://iris-project.org/
https://coq.inria.fr/
https://github.com/clef-men/zoo
https://github.com/ocaml-multicore/saturn
https://coq.inria.fr/
https://coq.inria.fr/
https://iris-project.org/
https://en.wikipedia.org/wiki/Hoare_logic

As a final note, we emphasize that our verification assumes a sequentially consistent
memory model. However, OCaml 5’s weak memory model has been formalized [7] in
Iris. Prior work [9] has shown how to extend logically atomic specifications in this
setting. Adapting our specifications and proofs should be rather straightforward and is
future work.

7 Acknowledgments

Saturn has been primarily developed and maintained by Vesa Karvonen and Carine
Morel, and previously by Bartosz Modelski. The work on formal verification has been
conducted by Clément Allain. We would like to thank Gabriel Scherer and the anonymous
reviewers for their feedback.

References

[1] Robert K. Treiber. Systems programming: Coping with parallelism. Tech. rep. RJ
5118. IBM Almaden Research Center, 1986.

[2] Maurice Herlihy and Jeannette M. Wing. “Linearizability: A Correctness Condi-
tion for Concurrent Objects”. In: ACM Trans. Program. Lang. Syst. 12.3 (1990),
pp. 463–492. url: https://doi.org/10.1145/78969.78972.

[3] Maged M. Michael and Michael L. Scott. “Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms”. In: Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing (1996), pp. 267–275. url:
https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf.

[4] Cormac Flanagan and Patrice Godefroid. “Dynamic partial-order reduction for
model checking software”. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’05. Long Beach,
California, USA: Association for Computing Machinery, 2005, pp. 110–121. isbn:
158113830X. url: https://doi.org/10.1145/1040305.1040315.

[5] Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. “TaDA:
A Logic for Time and Data Abstraction”. In: ECOOP 2014 - Object-Oriented Pro-
gramming - 28th European Conference, Uppsala, Sweden, July 28 - August 1, 2014.
Proceedings. Ed. by Richard E. Jones. Vol. 8586. Lecture Notes in Computer Sci-
ence. Springer, 2014, pp. 207–231. url: https://doi.org/10.1007/978-3-662-
44202-9%5C_9.

[6] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,
and Derek Dreyer. “Iris from the ground up: A modular foundation for higher-
order concurrent separation logic”. In: J. Funct. Program. 28 (2018), e20. url:
https://doi.org/10.1017/S0956796818000151.

[7] Glen Mével, Jacques-Henri Jourdan, and François Pottier. “Cosmo: a concurrent
separation logic for multicore OCaml”. In: Proc. ACM Program. Lang. 4.ICFP
(2020), 96:1–96:29. url: https://doi.org/10.1145/3408978.

[8] Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper
Svendsen, and Nikos Tzevelekos. “Theorems for free from separation logic speci-
fications”. In: Proc. ACM Program. Lang. 5.ICFP (2021), pp. 1–29. url: https:
//doi.org/10.1145/3473586.

[9] Glen Mével and Jacques-Henri Jourdan. “Formal verification of a concurrent bounded
queue in a weak memory model”. In: Proc. ACM Program. Lang. 5.ICFP (2021),
pp. 1–29. url: https://doi.org/10.1145/3473571.

5

https://iris-project.org/
https://github.com/ocaml-multicore/saturn
https://doi.org/10.1145/78969.78972
https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1007/978-3-662-44202-9%5C_9
https://doi.org/10.1007/978-3-662-44202-9%5C_9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3408978
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3473571

[10] Simon Friis Vindum and Lars Birkedal. “Contextual refinement of the Michael-
Scott queue (proof pearl)”. In: CPP ’21: 10th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, Virtual Event, Denmark, January 17-19,
2021. Ed. by Catalin Hritcu and Andrei Popescu. ACM, 2021, pp. 76–90. url:
https://doi.org/10.1145/3437992.3439930.

[11] Simon Friis Vindum, Dan Frumin, and Lars Birkedal. “Mechanized verification of
a fine-grained concurrent queue from meta’s folly library”. In: CPP ’22: 11th ACM
SIGPLAN International Conference on Certified Programs and Proofs, Philadel-
phia, PA, USA, January 17 - 18, 2022. Ed. by Andrei Popescu and Steve Zdancewic.
ACM, 2022, pp. 100–115. url: https://doi.org/10.1145/3497775.3503689.

6

https://doi.org/10.1145/3437992.3439930
https://doi.org/10.1145/3497775.3503689

	Abstract
	Motivation
	Library design
	Benchmarks
	Tests
	Formal verification
	Acknowledgments

