
Snapsho�able Stores∗

CLÉMENT ALLAIN, Inria, France
BASILE CLÉMENT, OCamlPro, France

ALEXANDRE MOINE, Inria, France
GABRIEL SCHERER, Université Paris Cité, Inria, CNRS, IRIF, France

We say that an imperative data structure is snapshottable or supports snapshots if we can e�ciently capture its

current state, and restore a previously captured state to become the current state again. This is useful, for

example, to implement backtracking search processes that update the data structure during search.

Inspired by a data structure proposed in 1978 by Baker, we present a snapshottable store, a bag of mutable

references that supports snapshots. Instead of capturing and restoring an array, we can capture an arbitrary set

of references (of any type) and restore all of them at once. This snapshottable store can be used as a building

block to support snapshots for arbitrary data structures, by simply replacing all mutable references in the

data structure by our store references. We present use-cases of a snapshottable store when implementing

type-checkers and automated theorem provers.

Our implementation is designed to provide a very low overhead over normal references, in the common

case where the capture/restore operations are infrequent. Read and write in store references are essentially as

fast as in plain references in most situations, thanks to a key optimisation we call record elision. In comparison,

the common approach of replacing references by integer indices into a persistent map incurs a logarithmic

overhead on reads and writes, and sophisticated algorithms typically impose much larger constant factors.

The implementation, which is inspired by Baker’s and the OCaml implementation of persistent arrays by

Conchon and Filliâtre, is both fairly short and very hard to understand: it relies on shared mutable state in

subtle ways. We provide a mechanized proof of correctness of its core using the Iris framework for the Coq

proof assistant.

CCS Concepts: • Theory of computation→ Data structures design and analysis; Program veri�cation;

• Software and its engineering→ Functional languages.

Additional Key Words and Phrases: Backtracking, Persistence, Semi-persistence, Program veri�cation.

ACM Reference Format:

Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer. 2024. Snapshottable Stores. Proc. ACM

Program. Lang. 8, ICFP, Article 248 (August 2024), 32 pages. https://doi.org/10.1145/3674637

1 Introduction

1.1 Snapshots as a Library

Consider an implementation of the Union-Find data structure o�ering the following interface:

type 'a node

val node : 'a -> 'a node

val find : 'a node -> 'a node

∗Some appendices missing: A long version of this paper, with more appendices, is available online.

Authors’ Contact Information: Clément Allain, Inria, Paris, France; Basile Clément, OCamlPro, Paris, France; Alexandre

Moine, Inria, Paris, France; Gabriel Scherer, Université Paris Cité, Inria, CNRS, IRIF, Paris, France.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART248

https://doi.org/10.1145/3674637

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0009-0005-2972-5181
HTTPS://ORCID.ORG/0000-0002-9126-0937
HTTPS://ORCID.ORG/0000-0002-2169-1977
HTTPS://ORCID.ORG/0000-0003-1758-3938
https://doi.org/10.1145/3674637
https://orcid.org/0009-0005-2972-5181
https://orcid.org/0000-0002-9126-0937
https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0003-1758-3938
https://doi.org/10.1145/3674637

248:2 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

val union : ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit

val equal : 'a node -> 'a node -> bool

val get : 'a node -> 'a

A Union-Find graph lets the user incrementally specify an equivalence relation between its nodes,
and e�ciently query information about the equivalence classes. In our API, each equivalence class
carries a value at some type 'a. The user can grow the equivalence relation by unifying two nodes
(union), providing a merge function for the carried values. Uni�cation is a destructive operation; it
modi�es the nodes in-place. We can ask for a representative in each equivalence class (find), check
if two nodes belong to the same class (equal), and ask for the value carried by the class (get).
A typical implementation would use a data structure such as follows:

type 'a node = 'a data ref

type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

A node is just a mutable reference to some data, which indicates whether it currently is the
representative of its equivalence class, or points to another node closer to the representative. The
rank integer is used to decide who to elect as the new representative when merging two nodes.

Union-Find is a central data structure in several algorithms. For example, it is at the core of ML
type inference, which proceeds by repeated uni�cation between type variables. Union-Find can
also be used to track equalities between type constructors, as introduced in the typing environment
when type-checking Guarded Algebraic Data Types (GADTs) for example.

When using a Union-Find data structure to implement a type system, it is common to need
backtracking, which requires the inference state to be snapshottable. For example:

(1) A single uni�cation between two types during ML type inference translates into several
uni�cations between type variables, traversing the structure of the two types. If we discover
that the two types are in fact incompatible, we fail with a type error. However, we may want
to revert the uni�cations that were already performed, so that the error message shown to
the user does not include confusing signs of being halfway through the uni�cation, or so
that the interactive toplevel session can continue in a clean environment.

(2) Production languages unfortunately have to consider backtracking to implement certain less
principled typing rules: try A, and if it fails revert to a clean state and try B instead.

(3) GADT equations are only added to the typing environment in the context of a given match
clause, and must then be rolled back before checking the other clauses.

We have encountered requirements (1) and (2) in the implementation of the OCaml type-checker,
and (1) and (3) in the development of Inferno [Pottier, 2014], a prototype type-inference library
implemented in OCaml that aims to be e�cient.

Now a question for the reader: how would you change the Union-Find implementation above to
support snapshots? The API needs to change a bit to let users talk about the whole Union-Find
graph – otherwise, they cannot even ask to go back to a previous version of the graph. The following
would be suitable, while still retaining the imperative �avor of the existing API:

type graph

type 'a node

val node : graph -> 'a -> 'a node

val get : graph -> 'a node -> 'a

val union : graph -> ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/inferno

Snapsho�able Stores 248:3

val equal : graph -> 'a node -> 'a node -> bool

type snapshot

val capture : graph -> snapshot

val restore : graph -> snapshot -> unit

A �rst idea to approach our question is to browse the scienti�c literature for implementations of
Union-Find with backtracking, for example looking at Apostolico, Italiano, Gambosi, and Talamo
[1994]. You would learn that there are algorithms in $ (log=/log log=) amortized running times,
and then deal with the rewarding but sizeable work of turning a dense 40 pages algorithmic paper
from the 90s into runnable code. (This works because Union-Find is a well-studied problem, you
would be less lucky with the same question on another, less common mutable data structure.)
Unfortunately, we are too lazy to do this. We would like a generic approach to add snapshots to an
imperative data structure, that does not require expert-level data structure knowledge.
There are two standard generic solutions that can be implemented with relatively little e�ort.

Full copy : take a snapshot by doing a full copy of the Union-Find graph.
This approach performs well in the case where snapshots are rare – in the extreme case
where no snapshots are taken, there is zero overhead. But it can become a performance
disaster when snapshots become more frequent, and the number of nodes modi�ed between
two snapshots is small – you copy all the nodes, but only touch a few of them. In one of our
use-cases using Inferno, this approach makes type-inference 50× slower.

Full persistence : implement the graph on top of a pure, persistent data structure. A standard
approach is to change the type 'a data ref to become just an int index into a persistent
integer map. Implementing capture/restore is then trivial, a snapshot is just the persistent
map itself. See for example the Haskell library disjoint-set. However, this adds a logarithmic
overhead to each access or modi�cation. In Inferno, we observed that this typically makes
type inference about 3× slower, even in cases where no backtracking is used. (Performance
is the reason why we stick to an imperative API instead of providing a functional API where
modi�cation leaves the input state unchanged and returns an updated state.)

We present a new Store library, which provides generic snapshottability while performing well
in all situations. “Snapshots: easy and cheap”. Unlike full persistence, it introduces no overhead
when backtracking is absent or infrequent. Unlike full copy, it performs well when backtracking
sections touch only a small subset of the structure.
Using our library for Union-Find requires changing the datatype de�nitions as follows:

type 'a node = 'a data Store.Ref.t

type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

The only change here is to replace the standard 'a ref type of OCaml mutable references by the
type 'a Store.Ref.t of store references in our Store library, which supports snapshots. In the
rest of the code, our Union-Find implementation would need to keep a store in its graph value, and
pass this store to the get and set operations on store references. These are trivial changes.

Summary. Our Store library introduces a notion of store, a bag of mutable references that lets you
capture and restore the state of all its references at once. Store can be used to easily make arbitrary
mutable data structures snapshottable, by replacing their mutable pointers by store references.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/inferno
https://hackage.haskell.org/package/disjoint-set
https://gitlab.inria.fr/fpottier/inferno

248:4 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

1.2 Notions of Persistence

The standard notion of persistence used in the algorithmics literature is one where modi�cation
operations return a di�erent version of the data structure, without modifying the version provided
in input. There are in fact many nuances to persistence, described below.

functional data structures are fully immutable, as is idiomatic in functional programming
languages. (Demaine, Langerman, and Price [2008] call them functional, one may also call
them pure data structures.) They typically rely on sharing immutable substructures between
di�erent versions, and copying the paths from those shared substructures to the root of the
structure.
Functional data structures have the advantage that they are thread-safe by construction: they
can be accessed in parallel without any synchronization.

persistent data structures may be implemented using mutable state; a typical example would
be the Splay-tree data structure that performs imperative rebalancing under the hood. They
may not be thread-safe. In the case of our store, our persistent snapshots are persistent in this
sense, and in particular they are not thread-safe – we cannot support restoring two snapshots
in parallel.

partial persistence is a weaker notion of persistence where only the “last” version of the data
structure may be updated, but read-only queries may be performed on arbitrary versions
of the structure. We could expose this capability for our backtracking stores, but we do not
have a clear use-case that would justify the additional implementation complexity.

con�uent persistence is a stronger notion of persistence where two independent instances
of a persistent data structure may be merged together – for example, merging two persistent
sets or maps together. Some persistent data structures cannot o�er con�uence at a reasonable
cost. We have not implemented con�uence for our stores; the user has to plan in advance
and allocate the separate data structures in the same underlying store.

semi-persistence is a weaker notion of persistence where only a linear chain of versions is
maintained at any point in time, rather than a tree of versions in the general case: acting on
a past version invalidates all the versions that are “after” this past version, and we cannot
access them anymore.
Our store provides persistent snapshots and also exposes a semi-persistent API based on
transactions that we describe in Section 4. This brings moderate performance bene�ts for use-
cases that do not need full persistence; we observed no improvement on some benchmarks,
5%-10% speedups in others, and larger gains for some very speci�c workloads.

Use cases for persistence and semi-persistence. A semi-persistent approach su�ces whenever we
only ever restore ancestors of the current version. This is the case for most backtracking problems.
For example, in a SAT/SMT solver, backtracking (when a con�ict is found) goes back to a time
when fewer decisions were made, it never jumps “forward” into a saved search state where more
decisions had been made.
Some search algorithms do not perform a full depth-�rst search, they explore several positions

in the tree in parallel, iteratively re�ning the more promising positions, and they may “fork” new
search branches from the same promising position several times. Those require persistent snapshots.
Another trite example is saves in video games, where players can load previous saves to move
forward in game time, or go back to parallel/divergent play histories.
The original persistence use-case of Baker [1978] was the implementation of e�cient dynamic

binding in a Lisp interpreter. E�cient Lisp interpreters at the time would have a semi-persistent
store for the dynamic environment, with a stack structure mirrorring the dynamic call stack of
the program – on function return they would “undo” bindings performed within the body of the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:5

function, to return to the dynamic binding environment of the caller. But this approach does not
work when returning functions as �rst-class values, as the body of the functions (when called later)
should be evaluated in the dynamic environment where it was de�ned, whose de�nitions have
been undone in the meantime. Instead, Baker implemented a persistent store for its environments;
�rst-class functions would capture a snapshot at their de�nition site, to be restored at call-time.

1.3 Performance Model

Following Baker [1978], we implement Store as a “journaled” data structure; the current version
of the store is represented in memory just like normal references, but we also keep a record of
past operations to be able to go back to previous versions. If the log of operations between two
snapshots � and � has size Δ, then the space cost of the log is $ (Δ), and restoring the state of �
when we are currently at � takes times $ (Δ).

One may expect the number Δ of operations recorded to be exactly the number of operations
performed between the two snapshots. For Union-Find problems the number of reference updates
remains relatively small, but in general this number of operations may be large, much larger than
the size of the data structure itself. We introduce a key optimization, record elision, where we
record at most one operation per store location updated between two consecutive snapshots. As a
result, our bound Δ is the number of distinct locations modi�ed between the two snapshots, which
could be much smaller than the total number of operations. Record elision does not just improve
asymptotics, it is key to low-overhead implementation of set for store references.

We can bene�t from record elision because our interface requires users to be explicit about where
they take snapshots, that is, where the backtracking points are in their programs. Record elision is
not available to the more elegant, more convenient and more functional interface of a persistent
store, which corresponds to taking a snapshot after each update operation.

In the speci�c case where each snapshot is restored at most once – this is a common property of
backtracking workloads, and enforced by our semi-persistent interface – one can amortize the cost
of snapshot restoration over each operation after the snapshot is taken, so restoring a snapshot
has $ (1) amortized complexity. This amortization does not work in the general case of persistent
snapshots; for example, one could keep alternating between two snapshots without performing
any operation in between. This bad interaction between persistence and amortized bounds is
a well-known problem in the algorithms literature, typically solved by sophisticated rebuilding

techniques [Chuang, 1994, 1992]. We do not solve it, as our current use-cases do not need it.
When discussing our design choices, we mention constant factors a lot. Imagine that you are

implementing a type checker (with type inference) for your programming language, and suddenly
you realize that an oddball new feature � that you want requires backtracking inference decisions,
which you did not need previously. You have to move your type-checker state to di�erent data
structures that support snapshots. You need this new capability only for programs that use feature
� , but you pay the cost of the data structure all the time.1 If you are not careful about constant
factors, this implementation change could make your type-checker 2×, 5× or log(=)× slower for
all programs, whether they use your new feature or not. This is not acceptable.

Contributions

We report on the implementation of snapshottable stores, a bag of mutable references that support
e�ciently capturing and restoring its state to implement backtracking. This abstraction can be used
to easily add snapshots to complex imperative data structures. The implementation (1) is expressive,

1You could think of dynamically switching from one data structure to another when feature � occurs. This increases

implementation complexity, and you still have the problem of not-too-slow type inference for programs that do use � .

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:6 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

it provides persistent and not just semi-persistent snapshots, (2) is e�cient, as demonstrated by
benchmarks, and (3) its core mechanism is formally proved correct.
We claim the following contributions:

(1) The concept of “snapshottability” as a service worth providing in a reusable, generic way as
a small software library. When we looked at existing library ecosystems (in OCaml but also
Haskell, Scala, etc.) we found a few implementations of snapshottable stores in the wild, but
almost always as part of a larger program that uses it exclusively, not as a shared library.

(2) An e�cient OCaml implementation of a store with persistent snapshots [Clément and Scherer,
2023]. The implementation, extending the journaled approach of Baker [1978], is short and
subtle. It is heterogeneous, references of di�erent types can be tracked by the same store.

(3) The record elision optimization which is key to an almost-zero overhead on the set operation
on set-heavy workloads. Forms of record elision exist in previous semi-persistent implemen-
tations, but combining persistent snapshots and record elision is challenging and Store is the
�rst implementation to do so.

(4) A mechanized proof of correctness of persistent snapshots in the presence of record elision,
using the Iris separation logic framework in the Coq proof assistant [Allain, 2024].

(5) An additional API of semi-persistent snapshots, which restricts ourselves to a linear history
of snapshots for further e�ciency bene�ts.

(6) Benchmarks comparing the performance of our implementation with other approaches,
demonstrating that Store performs well on a broad variety of workloads.

2 A Core Store

2.1 Baker’s Version Trees

The starting point of our implementation is Baker’s version trees introduced in Baker [1978]. Baker’s
trick has been reused or rediscovered many times since, mostly in the context of implementing
persistent arrays: homogeneous structures indexed by small integers. O’Neill and Burton [1997]
give a pleasant survey of approaches to persistent arrays. It lists three works that reinvented Baker’s
trick in the late 80s.
In Baker’s work, the programmer can refer to many di�erent persistent versions of a data

structure, but one is the “current version” on which access and update operations operate as usual
in constant time. The “current version” uses its standard representation – for example, the current
version of a Baker array is just an array. Older versions are represented by nodes in a version graph
(in fact a rooted tree), whose root is the current version, and where edges log operations that were
performed. Any older version can be restored by applying a “rerooting” operation on its node (it
becomes the new root of the graph) which reverts all the updates that happened between that older
version and the current version.

Consider the following Store user program:

let s = Store.create () in

let r = Store.Ref.make s 0 in

let snap0 = Store.snapshot s in

let () = Store.Ref.set s r 1 in

let () = Store.restore s snap0 in

let () = Store.Ref.set s r 2

At the point of let r = Store.Ref.make s 0, our version tree (shown in Figure 1a) has a
single node where the reference r has value 0. The mapping {A ↦→ 0} is not stored within the node

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:7

� {r ↦→ 0}

(a)

�

� {r ↦→ 1}

r = 0

(b)

� {r ↦→ 0}

�

r = 1

(c)

�

�

� {r ↦→ 2}

r = 1

r = 0

(d)

Fig. 1. Version trees in the example program

�, it describes the current state of the reference A in the current state. We place it on � to indicate
that � is the current root of the version tree, which is also indicated by the darker background.

Calling Store.snapshot s at this point does not change the version tree. The snapshot returned
is basically just a pointer to the current root of the graph, �.

Calling Store.Ref.set s r 1 creates a second node � in the version tree, which describes the
new current state (see Figure 1b). The node � now points to �, with information on how to revert
to � if desired – one should restore r to 0.
Calling Store.restore s snap0 reroots the version tree to have root � again – � was the

current node at the time where snap0 was captured (see Figure 1c). We do this by starting from the
snapshot node �, updating the current state by using the information stored on the edges. Note
that the edge between � and � has changed direction (now � points to the new current root �),
and the information on the edge now describes how to restore the state of � from the state of �.
At this point, calling Store.set s r 2 creates a new node � from �, which becomes the new

current root, as shown in Figure 1d.
This representation provides constant-time access to the current state of the store, with the exact

same constant factors as OCaml native references – r can in fact just be a native reference.
A snapshot is just a node in the version tree. Restoring the snapshot means rerooting the tree

so that the snapshot node becomes the new current root – and the current state gets updated
accordingly. We sketch our implementation in Section 2.3. It is linear in the length of the path from
the snapshot node to the current root node. The length of this path is the number of operations
that happened “after” the snapshot node, in a sense that is made precise in the next section.

2.2 A Whi� of Graph Theory

In graph theory, an (undirected) tree is a certain kind of (undirected) graph: a graph that is acyclic
(no cycle in the graph) and connected (all nodes are reachable from each other). In other words, an
undirected tree is an undirected graph where there exists a unique path between all pairs of nodes.

The notion of "tree" that is common in programming corresponds to the notion of rooted tree in
graph theory, a tree with a designated root node. The choice of root uniquely determines a parent
relation that relates � to � when the parent of � is �. There is at most one parent, and the root is
the only node with no parents. If we look at a given undirected tree) , and two di�erent choices of
root" and # , there is a simple relation between the parent relations of the"-rooted and # -rooted
trees: all nodes have the same parent in both trees, except on the (unique) path from" to # where
the parent relations are mutual inverses.

Over our version trees, there are two rooted trees (two choices of root) of interest:

(1) The current tree, whose root corresponds to the current state of the structure – � at the end
of our example above.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:8 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

(2) The historic tree, whose root is the initial node created when the store was created – � in our
example. (This is a slight simpli�cation, there is a version tree node before r was created that
we are not showing in the version tree for simplicity.)

We call history of a node the path from this node to the historic root. The complexity of rerooting
from the current tree � to a given snapshot tree � is exactly the length of the unique path from �

to � in the version tree.

2.3 Implementing Version Trees

We learned of Baker’s trick from Conchon and Filliâtre [2007], which use it to de�ne persistent
arrays, on top of which they build a persistent Union-Find, with OCaml code fairly close to what
we show in this section. The core of Store, described here, has the following API:

type store

val create : unit -> store

module Ref : sig

type 'a t

val make : store -> 'a -> 'a t

val get : store -> 'a t -> 'a

val set : store -> 'a t -> 'a -> unit

end

type snapshot

val capture : store -> snapshot

val restore : store -> snapshot -> unit

The Ref module implements mutable references inside the store. The store must be passed
as argument to all operations on references, and it is an unchecked programming error to use a
reference with a store it does not belong to. The snapshot type represents persistent snapshots of
the state of the store at a given point in time. New snapshots for the current state are created with
capture, and the store state can be later reset to the snapshot state using restore.
The version tree is a graph of mutable nodes, whose value can be Mem to indicate that they are

the current root – the state of this node is stored in memory – or Diff if they log a reference write.

type node = data ref and data = Mem | Diff : 'a Ref.t * 'a * node -> data

If� has � as parent in the current tree, its data must be Diff(r, v,�), where r is a reference and v
is the value of r, in �.

Finally, the store is just a mutable reference to the current root of the version tree, and a snapshot
remembers which node was the current root when it was captured2.

type store = { mutable root : node; } type snapshot = { root : node; }

Easy parts. Creating a new store or taking a snapshot are the obvious things:

let create = { root = ref Mem }

let capture store : snapshot = { root = store.root }

2In the actual implementation, we also remember the store, in order to fail at runtime if the user tries to use a snapshot

with another store.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:9

References have the same representation and get operation as standard OCaml references:

module Ref = struct

type 'a t = { mutable value : 'a; }

let make v = { value = v }

let get _s r = r.value

let set s r v = ... (* to be detailed below *)

end

The two di�cult operations are Ref.set, which grows the version tree with a new node, and
restore, which reroots the version tree to a snapshot node.

Update operation: Ref.set. When we call set s r v, the current root of the version tree, which
was previously a Mem node, becomes a Diff node pointing to a new current root. The Diff node
carries the previous value of the reference, to be able to restore the reference to its previous value
later on.

let set s r new_val =

let old_val = r.value in

let new_root = ref Mem in

let old_root = s.root in

r.value <- new_val;

old_root := Diff(r, old_val, new_root);

s.root <- new_root

The code is short, but reasoning about it is di�cult. It helps to de�ne a model of the current
store, and a model of each node in the version tree. A node � is modelled by a functional mapping,
denoted ⟦�⟧, from references to their values. The model of the store is the current model, the model
of the current root. The model of each node is de�ned as follows:

(1) The mapping of the Mem node maps each store reference to its current value.
(2) The mapping of a Diff(r, v, n) node is ⟦n⟧[r ↦→ v].

In other words, if � is the parent of � in the current tree, then the edge from � to � (stored in
�’s data in the OCaml representation) records how to transform ⟦�⟧ into ⟦�⟧.

If we look at Ref.set again, we can now check that, given a current mapping<, set s r v will
move us to a new current mapping<[r ↦→ v] (with r.value <- new_val). Furthermore, since
old_val stores the value<(r), the mapping of the old root (and hence of the existing version tree)
is preserved as it becomes<[r ↦→ new_val] [r ↦→ old_val] =<[r ↦→<(r)] =<.

Reroot, restore. The operation reroot(�) makes an arbitrary node � the new root of the current
tree – without changing the model of any snapshot node in the tree. A “simple” implementation of
reroot is shown in Figure 2.
Our actual (veri�ed) implementation contains two improvements over this “simple” version.

(1) In this version, every recursive call in the Diff(r, v, n') case writes the data of both the
node n and of its parent node n' – which becomes its child in the modi�ed version tree. This
means that the data of most nodes is written twice, �rst to Mem and then to their �nal data.
Our implementation avoids these redundant modi�cations by writing Mem only once at the
end, at the cost of a more complex speci�cation for the recursive function.

(2) reroot reverts and reverses Diff nodes from the root of the version tree to the snapshot node.
This corresponds to undoing operations from themost recent operation to the oldest operation,
as it should be. The simple version does this via a non-tail-recursive call reroot n' on the

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:10 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

let rec reroot n =

match !n with

| Mem -> ()

| Diff (r, v, n') ->

reroot n';

let old_v = r.value in

r.value <- v;

n := Mem;

n' := Diff (r, old_v, n)

Before the call, n points to its parent node n',
and ⟦n⟧ = ⟦n′⟧[r ↦→ v].

At this point, the current model is ⟦n′⟧.

The current model becomes ⟦n′⟧[r ↦→ v] = ⟦n⟧.

n becomes the current root,
matching the current model.

The model of n' becomes
⟦n⟧[r ↦→ old_v] = ⟦n′⟧ again.

Fig. 2. Reroot (simple version)

parent node n' before it handles the child n. To avoid stack over�ows our implementation
uses a tail-recursive variant where we �rst accumulate Diff nodes in a list, most recent
operation at the head, and then traverse the list in order.

Finally, restore can be easily de�ned from reroot:

let restore (store : store) snapshot =

reroot snapshot.root;

store.root <- snapshot.root

Remark. This concludes our retelling of the core algorithm of Baker [1978], with an OCaml
realization inspired by Conchon and Filliâtre [2007]. We consider what follows as original work.

2.4 Record Elision

Record elision is a key optimization that changes the qualitative performance pro�le of the library.
The idea is simple: if we have already performed a set operation on some reference r in “the
current version” (since the last snapshot), we have created a Diff node with the value before that
operation; so if we perform a set on that reference again, there is no need to log anything, as the
older Diff node will already reset the reference to its previous value. This optimization is only
valid if no snapshot was taken after the previous Diff node, otherwise that snapshot would get the
wrong value of r on rerooting.

We do not wish to search the history on each set to check this property. In fact we cannot check
it with the previous de�nitions, as there is no trace in our graph data structure of which nodes have
been captured as snapshots. We solve both issues by introducing a notion of generation, an integer
that counts the number of snapshots taken in the history of a node. In particular, if two nodes
belong to the same history and have the same generation, there is no snapshot between them.

We keep track of generations in the store graph (the generation of the current root), in snapshots
(the generation of the snapshot node), in references (the generation of the last Diff node on this
reference), and Diff nodes.

type store = { mutable root : node; mutable generation : int; }

type 'a Ref.t = { mutable value : 'a; mutable generation : int; }

type snapshot = { store : store; root : node; generation : int; }

type node = data ref

and data = Mem | Diff : 'a Ref.t * 'a * int * node -> data

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:11

Creating a new snapshot increments the generation of the store:

let capture s =

let snap = { store = s; root = s.root; generation = s.generation; } in

s.generation <- s.generation + 1;

snap

All the magic happens in the Ref.set function which updates a store reference. (We use a lighter
gray color for code that is identical to the previous version.)

let set (s : store) (r : 'a Ref.t) (new_val : 'a) : unit =

if s.generation = r.generation

then r.value <- new_val

else

let old_val = r.value in

let old_gen = r.generation in

let new_root = ref Mem in

let old_root = s.root in

r.value <- new_val;

r.generation <- s.generation;

old_root := Diff(r, old_val, old_gen, new_root);

s.root <- new_root

By comparing the two integers s.generation and r.generation, we check whether a snapshot
was captured between the last recorded write to the reference and the current root. If no snapshot
was taken, then we do not record the new update in the version tree – it is useless, as any restore

call will restore an older value of the reference from the recorded write. We call this a record elision.
If a snapshot was taken, we update the generation of the reference: we have just recorded the write,
so we can elide all records for that reference until the next snapshot is taken.

In terms of model, calls to set r v where record elision takes place are harder to reason about,
because they mutate the mapping of existing nodes in the version tree: for all the nodes from the
current root (included) to the last Diff node on this reference excluded, their mapping is from
some< to<[r ↦→ v]. In the absence of record elision, the mapping of all version tree nodes was
persistent: the data on the node may change but its mapping remained unchanged. Record elision
relaxes this property: the mapping of nodes that are captured by a snapshot is persistent, but other
nodes, in fact the nodes between the last snapshot and the current root, may see their mapping
changed by later operations. This weaker guarantee su�ces, as we only provide persistent snapshots
to users, they cannot observe the mapping change for other nodes.

Performance impact. Record elision has a transformative performance impact on work�ows that
use Ref.set heavily and snapshot capture rarely. (We generally assume that backtracking is rare
relative to reads and writes, but many work�ows are rather dominated by reads so record elision
matters less.) Indeed, a record-elided Ref.set is just an integer comparison and a write, which is
basically the same as a write: in OCaml, polymorphic writes go through a write barrier, so the cost
of the write dominates the generation test. In the regime where most writes are elided, Ref.set is
essentially as fast as OCaml primitive references, providing the almost-zero overhead we advertised.
On the other hand, a non-elided set performs an extra write and an allocation. On a get/set
microbenchmark with 16 get for each set, disabling record elision made the test 6× slower.

Record elision also has a transformative e�ect on the asymptotic complexity of store operations.
As we detailed in the introduction (Section 1.3), the key complexity parameter of Store is the size Δ

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:12 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

of the log between two consecutive snapshots. Without record elision, Δ is the number of write
operations that happened since the previous snapshot, which can grow arbitrarily large. Record
elision reduces Δ to the number of distinct memory locations touched since the previous snapshot.

Notes. If one tries to implement persistent data structures on top of Store by capturing a snapshot
after each write operation, then record elision never applies. This explains why we are not o�ering
a persistent API for Store. It also probably explains why we have not found a description of this
simple idea in the existing literature on more-or-less-persistent data structures.
It is tempting to think of generations as unique timestamps for snapshots, and indeed the two

concepts overlap in semi-persistent implementations. Scaling record elision to the persistent setting
required a more precise de�nition of generations that need not be unique. Preserving uniqueness in
the persistence setting would be an instance of the order maintenance problem, which has amortized
constant-time solutions (Bender, Cole, Demaine, Farach-Colton, and Zito [2002]; but think of the
constant factors!) and is a common ingredient in persistent data structure design.

2.5 Liveness

An important consideration in our choice of data structure design is liveness. In garbage-collected
languages, the memory footprint of a data structure is determined by what other portions of
memory it references, keeps alive. Suppose for example that a user captures a snapshot of the
store, and then later drops all references to this snapshot. Can the memory corresponding to this
snapshot be collected, or is it kept alive by the global Store data structure?

The version tree structure inherited from Baker [1978] has excellent liveness properties: pointers
in the data representation coincide with the parent relation of the current tree, so that referencing
the store only keeps the current root alive. In particular, if we do not reference any snapshot, then
the whole version tree (except for the root) can be collected. Locally, only the operations that are
needed to restore a snapshot that is still referenced are kept alive. This still holds if the user forgets
a reference: as long as a snapshot mentioning it is kept alive, the reference will be kept alive (one
could use weak pointers and ephemerons [Hayes, 1997] to get better liveness properties there, at
signi�cant complexity and runtime cost). On the other hand, if the user forgets all the snapshots
mentioning a reference, then it can be collected. This is a common situation in realistic workloads
such as type-checking: we typically forget all the references and all the snapshots created when
typing a given subterm.
Another case where our implementation can “leak” values is when forgetting intermediate

snapshots: if there are three consecutive snapshots �, � and � with the same reference A being
written both between � and � and between � and � , forgetting � will still keep the value of A in �

alive even though we can never restore � again. We could consider an implementation using weak
pointers and �nalizers to notice this and compress the log, but suspect that the cost in performance
and code complexity would not be worth it for most applications. Our semi-persistent interface (see
Section 4) provides a commit operation that does remove some (but not all) such unneeded records.
Most other implementation choices have worse liveness properties. Semi-persistent implemen-

tations based on a centralized journal often cannot forget any snapshot. Implementations based
on functional or imperative maps (with copy) can never forget references. Another common im-
plementation choice for persistent structures, the so-called fat nodes approach, keeps a list of all
past values in the reference itself. This makes it impossible to forget past versions or siblings, but it
allows the user to forget references.

We considered liveness properties seriously in our design, and it helped guide some implementa-
tion choices. We believe that the liveness properties of our implementation are adequate, and that

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:13

Create

{True} create () {_B. store B ∅}
Ref

{store B f} ref B E {_A . ⌜A ∉ dom(f)⌝ ∗ store B ([A :=E]f)}

Get

A ∈ dom(f) f (A) = E

{store B f} get B A {_E ′ . ⌜E ′ = E⌝ ∗ store B f}

Capture

{store B f} capture B {_C . store B f ∗ snapshot B C f}

Set

A ∈ dom(f)

{store B f} set B A E {_(). store B ([A :=E]f)}

Restore

{store B f ∗ snapshot B C f′} restore B C {_() . store B f′}

Fig. 3. Interface of our Coq store

it does make a positive di�erence in practice with respect to implementation approaches that keep
all store operations alive – in the type-checking use-case, for example.

3 A Coq Store

In this section, we use separation logic to specify and verify the core of our approach: an implemen-
tation of snapshottable stores with record elision but without transactions. After introducing the
formal setting (Section 3.1), we present the speci�cation (Section 3.2) and the high-level ideas of the
proof (Section 3.3). Our results are entirely mechanized in the Coq proof assistant [Allain, 2024].

3.1 Formal Se�ing

Formally, we use the Iris separation logic framework [Jung, Krebbers, Jourdan, Bizjak, Birkedal,
and Dreyer, 2018]. We write our programs in an untyped call-by-value _-calculus with mutable
state, similar to the HeapLang language that comes with Iris.

In the following, we write % for an Iris assertion, %1 ∗ %2 for separating conjunction, %1 −∗ %2 for
separating implication and ⌜q⌝ for the embedding of a pure (meta-level) proposition q . To specify
an expression 4 , we use a Hoare triple {%} 4 {_E .&}, where % is the precondition, meta-variable E
captures the resulting value and & is the postcondition.

3.2 Specification

Figure 3 presents the speci�cation of our Coq store. To describe a store B at the logical level, we
use the assertion store B f denoting that B is modeled by the (partial) mapping f from references to
values. We write f (A) for the value associated to reference A in f , [A :=E]f the functional update
of f with the mapping A ↦→ E , and dom(f) the domain of f (the set of created references). We �rst
present the speci�cation of the functions create, ref, get and set. We then turn our attention to the
functions involving snapshots, namely capture and restore.

Create asserts that create () has trivial precondition and returns a store B with an empty model.
Ref asserts that ref B E creates a new reference. The precondition consumes an assertion store B f
and the postcondition produces an assertion store B ([A :=E]f), where A is the returned reference.
The postcondition also asserts that A is fresh. Get asserts that get B A returns the value associated
to A in the model of B . The precondition consumes an assertion store B f , and requires that A is in
the domain of f and is mapped to the value E . The postcondition asserts that the function returns
the value E , and restores the assertion store B f . Set asserts that set B A E correctly sets the value
associated to A to E in the model of A . The precondition consumes an assertion store B f and requires
that A is in the domain of f . The postcondition produces an assertion store B ([A :=E]f).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:14 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

� � � �

� �

�

� �

(a)

� �

�

�

�,�

�

�

(b)

Fig. 4. Graph of nodes and its corresponding subgraph of captured nodes. Squares represent captures nodes
and circles non-captured nodes. Gray node identifies the root.

To describe a snapshot C at the logical level, we introduce the assertion snapshot B C f . It asserts
that C is a valid snapshot of the store B , whose model was f when the capture occurred. Crucially,
the assertion snapshot B C f is persistent [Jung, Krebbers, Jourdan, Bizjak, Birkedal, and Dreyer,
2018, §2.3]. A persistent assertion is in particular duplicable, meaning that the following entailment
holds: snapshot B C f −∗ (snapshot B C f ∗ snapshot B C f).
Capture asserts that capture B creates a new snapshot. The precondition requires that B is a

valid store of model f . The postcondition asserts that the store was preserved and that the function
returned a snapshot C such that snapshot B C f holds. Restore shows that indeed, restore B C updates
the model of B to the model captured by C . The precondition consumes the assertion store B f and
snapshot B C f ′, and the postcondition produces the updated assertion store B f ′. Notice that there
is no need to repeat the assertion snapshot B C f ′ in the postcondition. Thanks to persistence, the
user can duplicate the assertion before applying Restore.

3.3 High-Level Ideas of the Proof

We wrote two di�erent proofs of correctness of Store. In the �rst iteration, we used the graph
structure discussed so far and present in-memory in our implementation, with a mapping f for
each node of the graph. We were able to prove the speci�cation, but without generations and record
elision. As we explained in Section 2.4, record elision mutates the mapping of the nodes between
the last captured node and the current root, and our attempts to formalize this ran into a wall.

The second iteration of the proof, which supports generations and record elision, relies on a more
structured presentation of the graph: the subgraph of captured nodes. More precisely, captured
nodes induce a coherent subgraph in which two captured nodes are connected by a chain of
non-captured nodes. Consider, for example, the graph of Figure 4a. In the corresponding subgraph
shown in Figure 4b, we only retain captured nodes �, � , � . We track separately the root � and the
chain leading to it from the last captured node. Even in the presence of record elision, writes only
a�ect the chain to the root, the mappings of the captured nodes remain persistent.

4 Semi-Persistence Through Transactions

4.1 Introduction

The capture and restore API presented in Section 2.3 is low-level in the sense that users have
to create persistent snapshots, keep track of them, and restore them manually. For some common
workloads, we provide high-level wrappers that are more convenient but also less expressive.

val temporarily : store -> (unit -> 'a) -> 'a

val tentatively : store -> (unit -> 'a) -> 'a

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:15

These wrappers call the provided function, then restore the state of the Store to the state it had
prior to the call either unconditionally (temporarily) or if an exception is raised (tentatively).
Both functions can be implemented by capturing a snapshot before calling f, and restoring it

after the call if necessary. Snapshots created by these wrappers have interesting properties: not
only are they restored at most once, but their use follows a rigid structure dictated by scoping rules.
This corresponds exactly to the notion of semi-persistence in the data-structure literature: there is a
stack of versions, and versions that are removed from the stack are no longer accessible. Imposing
such a linear (or a�ne) discipline on snapshots makes reasoning about the implementation easier,
and avoids the aliasing of mutable state that makes the implementation of restore so subtle
(Section 2.3).

One could provide an entirely di�erent implementation of Store that only provides a semi-
persistent API. It can be expected to be slightly faster, perhaps simpler to implement, but would
provide less functionality than the persistent API of Store. Instead, we describe in this section
an extension of the Store API with semi-persistence in the same implementation, providing a
combination of both capabilities. We call this API transactional, because each semi-persistent
snapshot (or transaction) is terminated by either keeping (commit) or discarding (rollback) the
changes within. Users are expected to stick to the simple persistent API and the convenience
wrappers temporarily and tentatively, which are implemented using the semi-persistent API
for performance. In more advanced scenarios, users can directly use the transactional API, which is
more di�cult to use but can bring additional performance improvements.

4.2 Transactions for Semi-Persistence

Besides the high-level wrappers mentioned earlier, the transactional API is as follows:

type transaction

val transaction : store -> transaction

val rollback : store -> transaction -> unit

val commit : store -> transaction -> unit

A transaction represents an interval in the program execution during which an ephemeral
copy of the store is preserved. The transaction is created by calling transaction, and terminated
by calling either rollback or commit. rollback is similar to restore in the persistent API: it
resets the state of the store to the one it had when the transaction started. commit terminates
transaction, but the state of the store is unchanged – it merely discards the ephemeral snapshot.

Transactions can be nested following a stack-like discipline. Transactions are valid when created,
and terminating a transaction invalidates it and all the transactions that were created while it
was valid. Using an invalid transaction is a programming error and raises an Invalid_argument

exception.
As a simple example of use of transactions, we can implement the tentatively convenience

wrapper using the transactional API:

let tentatively store f =

let trans = Store.transaction store in

match f () with

| v -> Store.commit store trans; v

| exception exn -> Store.rollback store trans; raise exn

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:16 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

�

(a) Initial state

�)�

(b) A�er transaction

�)� �

(c) Before rollback

Fig. 5. Version graph during a transaction

4.3 Combining the Persistent and Semi-Persistent APIs

It is possible to write and reason about programs that combine both APIs by viewing the transaction
stack as a part of the capturable state of the store. Using a transaction while it is not part of the
current transaction stack is a programming error, but persistent snapshots can be used to move
freely between states with di�erent transaction stacks. Terminating a transaction invalidates all
transactions and snapshots that contains it in their transaction stack, weakening the persistence of
snapshots inside transactions: snapshots are only persistent until one of their enclosing transactions
is terminated.
It would be simpler to prevent the capture or restore of persistent snapshots as long as one

transaction is active, that is, to allow transactions only at the “leaves” of the search tree. Our more
�exible discipline allows many combinations that would be ruled out by such a restriction, in
particular the two following important use-cases:

Arbitrary search in the current context. Within a transaction or any amount of nested
transactions, it is possible to call a function that implements its own search sub-procedure
using the full Store API (persistent or semi-persistent), without using any of the snap-
shots or transactions in the ambient context. The validity of the pre-existing snapshots and
transactions is unchanged by this local search.

Moving to a di�erent context and then coming back. At any point during a Store-using
computation, it is possible to take a persistent snapshot (of the current store state, restore a
di�erent snapshot (′ (an older state in the store history, or a sibling state), perform arbitrary
store operations there, and restore (to continue the search as if nothing happened. This is
valid as long as the operations performed outside (preserve the validity of the transactions
in the stack of (.

4.4 Implementing Transactions

Transactions are implemented by adding a new kind of information in the graph, transaction nodes.
Starting a transaction when the current root of the version tree is � (shown in Figure 5a) creates a
new transaction node)� that tracks the transaction (shown in Figure 5b). This does not a�ect the
values of references: node)� has the same mapping as node �.

When the transaction is rolled back, arbitrary nodes may have been added, as shown in Figure 5c.
We remove the transaction node)� from the graph – that is, we mark the node as invalid. We also
remove (invalidate) all historic descendants of)�, so in particular the correctness of the version
tree is preserved. The initial state is restored: � becomes the current root again (Figure 5a). This
is only valid if the current root of the version tree was “inside” the transaction, that is, if it is a
node that is a current descendant of)�. We keep track of that information in the transaction node
(it is updated by reroot) and fail if the current root is not inside the transaction; otherwise, the
transformation would end up with two root nodes in the version tree, the previous root and �.

“Removing” a node is implemented by marking it, or one of its current descendants, as Invalid.
Which nodes to mark is an implementation detail; it su�ces to mark enough nodes that, when called
on an invalid snapshot or transaction, restore, commit, and rollback encounter an invalid node

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:17

and fail before they modify the current state. Our current implementation marks each transaction
node –)� and any child transaction – as well as the current root �.

Calling restore on a persistent snapshot must update the current state to apply the Diff nodes
along the path, but also revert the edges of those Diff nodes and update their data to allow restoring
in the other direction later. For transactions, rollback only updates the current state without
touching the Diff nodes, leading to a small but measurable e�ciency gain.

5 Testing and Benchmarks

5.1 Testing Store with Monolith

We used Monolith [Pottier, 2021], an OCaml testing framework that implements a speci�c form of
state-based property-based testing called model-based testing. It takes a description of the API to
be tested, a reference implementation (model) of the API, generates random sequences of API calls
and checks that the real implementation matches the model.

To test Store, we wrote a reference implementation, designed to be as simple and clear as possible
without any e�ciency requirement; one could consider it an executable speci�cation. The property
we ask Monolith to check is that the real and reference implementations agree. The reference
implementation represents functional mappings as a persistent map from unique integer indices
(representing references). This is a homogeneous representation (all references must have the
same value type) for simplicity: we only use integer values in tests. Each snapshot carries such a
functional mapping, as well as a list of transactions that it depends on (as described in Section 4.3).
A transaction is a snapshot, with a mutable boolean �ag indicating whether it is still valid. Finally, a
store is represented by a mutable reference to a snapshot; the active transactions are the transactions
that the current snapshot depends on. The data de�nitions of our reference implementation are as
follows:

type 'a sref = { key : int; default : 'a }

type 'a mapping = 'a Map.Make(Int).t

type 'a snapshot = { state : 'a mapping;

transactions : 'a transaction list; }

and 'a transaction = { snapshot : 'a snapshot;

mutable terminated : bool; }

and 'a store = 'a snapshot ref

We mention our testing approach explicitly because we have found it unreasonably e�ective. The
fuzzer we get from Monolith behaves, in our experience, exactly like a correctness oracle. After
any code change, you run the fuzzing test, and either it �nds a bug in a few seconds or the code is
correct. If it �nds a bug, it starts looking for a smaller test sequence that also fails, and waiting for
about 10 seconds will consistently produce a small, readable sequence of operations that can be
replayed to understand what is going on.
Writing complex code with a correctness oracle at hand is a liberating experience. Wondering

about why a particular line of code is necessary? Remove it, run the testsuite, and you see. Thinking
of reordering two state changes and wondering if there is an interaction between them? Just try it.
We believe that model-based testing is unreasonably useful for Store because (1) we have a

relatively small and simple API, so all interesting interactions are covered by random search and
(2) we gave a lot of thought to expressing clear speci�cations, which in turn make it easy to write a
precise reference implementation.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/monolith

248:18 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

5.2 Microbenchmarks

We studied the performance of our Store library on synthetic microbenchmarks that let us simulate
a variety of di�erent usage scenarios. These benchmarks perform almost only operations on
references, so they magnify the performance di�erences between implementations compared to
real-world programs – where most of the time is typically spent elsewhere. We would typically
consider overheads of up to 30% as small – unlikely to be noticeable in real-world programs, 2×-5×
as moderate, and above 10× as large.

Our main goal is to establish that if users need some form of backtracking in a (possibly small) part
of their program, using Store is always a good choice, they will not su�er a noticeable performance
degradation compared to a library that supports fewer features, in particular compared to third-
party libraries specialized for semi-persistence, and compared to built-in OCaml references when
no backtracking at all is used. Before our work on Store, when François Pottier needed a Union-
Find implementation with (non-nested) backtracking, he implemented the union-�nd library as a
functor over a store-like interface, so that users that do not need backtracking do not pay a cost
– they instantiate the functor with built-in references. We want to encourage users to drop this
parametrization strategy and use Store unconditionally, by showing that Store has best-in-class
performance for all relevant workloads.

Implementations. We compare the following implementations:

Store Our implementation.
Ref Native OCaml references; they do not support backtracking of any kind, and they are the

gold standard for “raw” get/set operations.
TransactionalRef A “journaled” store by François Pottier, implemented in union-�nd for the

needs of Inferno, that only supports non-nested (semi-persistent) transactions.
BacktrackingRef An earlier “journaled” implementation of Store that we wrote, that only

supports semi-persistence. A single dynamic array (the “log”) stores all antioperations, and
ephemeral snapshots are denoted by positions inside this array. BacktrackingRef performs
a record elision optimization.

Facile The backtrackable (semi-persistent) references of the Facile library, a well-established
constraint-programming framework for OCaml, written with performance in mind.3

Facile uses a “journaled” implementation with record elision, similar to ours. (Record elision
is easier to implement for semi-persistent implementations; our combination of persistent
snapshots and record elision is the novelty.)

Colibri2 The original backtrackable (semi-persistent) references of the Colibri2 constraint-
programming and SMT solver, written in OCaml. Colibri2 uses a “fat node” representation
where the previous values of each reference are stored within the reference itself and the work
of restoring an earlier version is done lazily on access, providing a constant-time rollback
operation. This implementation has better memory-liveness properties, due to history being
stored locally within each reference, but as evidenced by this section the on-demand approach
has a noticeable overhead due to the extra check in the performance-critical get operation.
We discussed this with the authors of Colibri2 who changed their implementation to be
similar to ours in January 2024 (the numbers in this section correspond to the previous,
distinctive implementation).

3Facile was written in 2005, and found to be comparable with state-of-the-art constraint solvers of the time: slower than

Ilog Solver 4.3, faster than ECLiPSe 5.2.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/unionfind
https://gitlab.inria.fr/fpottier/unionfind
https://gitlab.inria.fr/fpottier/inferno
http://facile.recherche.enac.fr/

Snapsho�able Stores 248:19

Map An implementation using persistent maps (the Mapmodule of the OCaml standard library):
$ (log=) get/set, but $ (1) capture/restore. This corresponds to the “full persistence” ap-
proach we mentioned in the introduction. We expect it to be quite slow due to the logarithmic
factor.

Vector an implementation using dynamic arrays, provided by the union-�nd library, where
backtracking operations copy the array. This corresponds to the “full copy” approach we men-
tioned in the introduction. It has fast get/set operations ($ (1)), but very slow capture/restore
operations ($ (=) in the number of references).
We expect Vector to be a solid baseline for the use-cases we had in mind when implementing
Store – infrequent backtracking operations so get/set dominate performance.

Benchmarks. We consider the following synthetic benchmarks.

Raw creates 1024 references, then performs a series of 32 reads and 4 writes per reference in a
loop repeated 1000 times.

Transactional (abort) creates 1024 references, then perform a series of reads and writes in a
loop. Each iteration of the loop is performed in a failed (aborted) transaction.
We run the following variants, to simulate a variety of workloads:
get 128 reads per reference, no writes, 200 iterations
set few no reads, only 64 references are written to (once) in total, that is only 1

16
of all

references, 40000 iterations
set 1 no reads, each reference is written exactly once, 6400 iterations
set 16 no reads, each reference is written 16 times, 600 iterations
We also run the “set few” version in a successful (rather than failed) transaction with the
same parameters, marked with “(commit)“.

Capture-heavy is the same as Transactional, but with di�erent parameters to test the case
where backtracking operations are much more frequent, with only a few reference accesses
per transaction. We perform 16 writes and 64 reads per transaction in total, spread over 4
references in the “small” version (all references are touched in a single transaction) and 1024
references in the “large” version (most references are untouched in each transaction).

Backtracking is the same as Raw, except that each iteration of the loop starts a new nested

transaction level. All transactions are failed (rolled back) once the loop completes. The loop
is repeated 1000 times, which is also the nesting depth.

Results summary. The results of the microbenchmarks are summarized in Figure 6. The results
are normalized relative to the Store implementation to show relative performance in the di�erent
tasks. The absolute benchmarks results are available in the appendices.

For reasons of space, we only provide a high-level summary of the results here. Detailed analyses
of each benchmark are included in the long version of this paper.
Our general conclusion is that TransactionalRef, BacktrackingRef, Facile and Store are

the best implementations, they perform very reliably over all benchmarks, with essentially no
overhead over built-in references in the Raw benchmark. With the exception of the “set 1” variant
where Vector shines, they are always the best implementations. For the benchmarks where they
are supported they have very close performance.
BacktrackingRef and Facile are able to perform as well as TransactionalRef despite sup-

porting nested transactions, and Store performs as well as those two despite supporting both
persistent snapshots and semi-persistent transactions.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/unionfind

248:20 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

10

20

30 Ref

TransactionalRef

BacktrackingRef

Store

Facile

Colibri2

Vector

Map

2.5

5.0

7.5

Raw Transactional (abort) (commit) Capture-heavy

get set few set 1 set 16 set few small large

0.0

0.5

1.0

1.5

2.0

T
im

e
(r
el
at
iv
e)

Ba
ckt

rac
kin

g

Fig. 6. Micro-benchmark results

Colibri2 is consistently slower than the other backtrackable implementations. This is due to
the high runtime cost of its on-demand approach, incurring additional costs on each get and set

operation.
This suggests that our objective for Store of always being a good choice – despite supporting

more features – is reached. It also shows the advantage of providing snapshottable stores as an
independent library that can be optimized once.

Note on API safety. The API provided by Store is very explicit not only about the store, but
also about the state represented by backtracking levels (transaction objects). On the other hand,
both Colibri2 and Facile use a mix of explicit (pop in Colibri2 and cut in Facile both take an
explicit backtracking level) and implicit state (push implicitly creates a new backtracking level in
Colibri2 and backtrack implicitly operates on the last non-cut backtracking level in Facile).
This makes using their APIs outside of the solvers they were designed for error-prone; in fact, we
initially used both APIs incorrectly when writing the benchmarks.

Details on Facile. Facile performs very well on the commit transactional work�ow, because
its implementation trades space for time, resulting in worse liveness properties. On commit, the
di� nodes that allowed backtracking become useless, but Facile leaves them on its backtracking
stack in a disabled (Cut) state. The time complexity of commit becomes linear in the number of
checkpoints, rather than the number of modi�ed references, but the space complexity becomes
linear in the total number of modi�ed references, rather than the references modi�ed in the current
history. On work�ows that mix a few long-running snapshots with many short-running commit

transaction, such as Inferno in the presence of backtracking, this choice can result in arbitrary
increase in memory consumption. On a micro-benchmark (a variant of our Transactional-Commit

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:21

benchmark, with 10,000 rounds) simulating such a work�ow we observe a memory consumption
of 6Mo for Store and 645Mo for Facile.

Details on Vector. Vector performs surprisingly well, despite an extra indirection and bound
checking. But it su�ers from very bad behaviors on “large support” workloads, where only a few
references are modi�ed per transaction. Our “Capture-heavy (large)” test simulates them, and
Vector is 6× slower than Store. We believe that this is the most common situation in real-world
workloads, and have observed even worse behaviors, for example Vector is 52× slower than Store
on one of our Inferno macro-benchmarks.

The best case for Vector is when each reference is modi�ed exactly once per transaction. Indeed,
all other implementations need to perform extra work on set that corresponds to a sort of per-
reference copy-on-write; if we set all references after a snapshot, the total copy work should be
at least as much as copying the vector on capture, with worse constant factors. We do observe
excellent performance for Vector in the “set 1” variant of Transactional, which simulates this.
But we do not know of programs in the wild with similar workloads.

If there are fewer references set per transaction, as in our “set few” variant, Vector is doing worse
than journaled implementations. (Empirically we observed a break-even point on this benchmark
when a fourth of the references are set per transaction.) On the other hand, when each reference is
modi�ed many times per transaction, as in the “set 16” variant, then journaled implementations
bene�t from record elision, reducing the advantage of Vector.

Details on Map. Map performs especially poorly in all benchmarks, except the capture-heavy
benchmarks. This is expected since capture and restore have no cost for Map, but even in these
favorable conditions Map is amongst the slowest implementations.

5.3 Macrobenchmarks

In order to validate the conclusions from microbenchmarks in more realistic scenarios, we adapted
existing programs that perform some sort of backtracking, to use the Store interface. This gives a
more realistic view of performance di�erences one can expect in practice. We detail the various
macro-benchmarks in Appendix B, with only a brief summary here.
Inferno re-checks the explicitly-typed programs elaborated by its type-inference engine. Our

original use-case for Store was the introduction of GADTs, which requires undoing changes to a
Union-Find of type equations.
Figure 7a measures type-checking a large explicitly-typed term that does not actually contain

GADTs (the common case). Store is noticeably faster than Vector, the previous best choice.
Figure 7b measures type-checking a small explicitly-typed GADT example. Vector behaves

terribly (this is a “large support” situation) and Store is much better than other choices.
Figure 7c measures Inferno type inference on a ML program. As mentioned earlier, Inferno uses

(non-nested) transactions to roll back partial uni�cations in case of uni�cation failure, and the
TransactionalRef implementation of François Pottier was written speci�cally for this use-case.
Our results show that Store can replace TransactionalRef for this use-case.

Figure 7d measures the performance of a constraint-based random generator of well-typed terms,
which is an independent reimplementation distinct from the Inferno codebase. The generator
interleaves top-down program generation with constraint-solving, to quickly discard ill-typed
terms and share type-checking work across similar terms. This benchmark uses the persistent
Store API: the entire state of the generator (initially written without Store) is persistent, and was
easy to integrate with the persistent Store API. In contrast, it would be fairly di�cult to use the
transactional API in a structured way.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno

248:22 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Time Relative

Store 0.21s 1.0x
Vector 0.28s 1.3x
Map 0.88s 4.2x

(a) Inferno type checking
(without GADTs)

Time Relative

Store 0.02s 1x
Map 0.08s 4x
Vector 1.3s 70x

(b) Inferno type checking
(GADT example)

Time Relative

T-Ref 0.03s 1x
Store 0.03s 1x
Map 0.09s 3x
Vector 1.78s 52x

(c) Inferno type inference
(short transactions)

Implementation Time Relative

Store (persistent) 262ms 1.00
Map 334ms 1.27

(d) Generator of well-typed terms

Implementation Time Relative

base (hand-optimized) 1.35s 1.00
Store 1.63s 1.20
Store (persistent) 1.76s 1.30
Vector 4.03s 2.99

(e) Sudoku solver

Fig. 7. Macro benchmarks

Finally, Figure 7e represents results on a backtracking-heavy program, an optimized Sudoku
solver implemented in OCaml by Alain Frisch in 2005. The original implementation uses a hand-
optimized “full copy” approach, taking a copy of the Sudoku board state on backtracking points.
(Our test is on a 25 × 25 board.) Our results show that replacing the hand-optimized backtracking
logic by Store only results in a 20% overhead, that using the persistent API instead is slightly
slower, and that Vector would be much worse, 3× slower than the original implementation.

6 Related Work

6.1 Snapsho�able References

We searched the OCaml, Haskell, Scala and Rust ecosystems for previous libraries providing
“snapshots as a service”, and were surprised not to �nd any.4 Some larger systems implement
snapshottable references internally for their own purpose, in particular SAT/SMT solvers and
constraint solvers; but they did not seem to consider releasing this as an independent library. In our
experience, designing Store as an independent library led us to consider a variety of workloads
more thoroughly, and improved our design and implementation.

Union-Find. The inspiration to think of “snapshottable store” as a library of its own came from
the union-�nd OCaml library, which provides a Union-Find implementation parametrized over a
“store”, a few simplistic store implementations, and the StoreTransactionalRef implementation
supporting non-nested snapshots.

Coincidentally, the closest library we found to “snapshots as a service” is the Rust crate ena, which
implements a Union-Find data structure and provides an undo_log module o�ering a snapshot
abstraction. This crate was extracted from the codebase of rustc, the Rust compiler, to be shared

4The undo-redo Rust crate is the closest we found. It keeps a history of “edit events” on some structure, and can call an

“undo” callback associated to each event. It seems designed to record events at the scale of human interactions – human

modi�cations to a document, etc. – rather than �ne-grained changes, and would be fairly ine�cient for our use-cases.

It provides “record”, with a linear history (like most semi-persistent implementations) and “histories”, which allows a

branching history with a git-like model of explicit branches.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/unionfind
https://github.com/rust-lang/ena/
https://github.com/evenorog/undo

Snapsho�able Stores 248:23

with other Rust projects with a need for Union-Find. The implementation of undo_log5 provides a
semi-persistent interface with a transactional �avor (commit and rollback), implemented with a
global dynamic array of changes to undo. In particular, snapshots are not persistent, with dynamic
checks and explicit panics if invalid snapshots are used. It implements the simplest form of record
elision, which is to skip any logging when no valid snapshots exist.
ena supports arbitrary edit actions with undo callbacks (“custom operations”), but provides

built-in support for creating and setting references. Those references are stored in a large dynamic
array, with indices passed to the user. In consequence, a given undo log is parametrized over a
�xed type of values, and references of di�erent types cannot be combined in a single undo log –
this makes using them more cumbersome for some applications, see our discussion of the Rust
type-checker below. In contrast, our heterogeneous store can contain references of any type.

Search monads. If we cannot �nd “snapshots as a service”, we looked for such code bundled into
a larger abstraction, namely a backtracking/search library. We have not found interesting code to
snapshot state in search monads or logic programming monads.

Software Transactional Memory. Software Transactional Memory libraries are designed for con-
currency rather than sequential use. In particular, their main concern is to detect races with another
transaction running concurrently. STM libraries typically do implement a form of journaling, but
with di�erent requirements that make a comparison di�cult. In particular, the implementations
that we studied6 cannot implement record elision, as they need to track the previous and �nal
value of each transaction variable – they cannot elide all tracking even if the variable was already
modi�ed by the continuation.

Bespoke implementations in types, solvers. We surveyed implementations of snapshottable stores
hidden inside type checkers (we surveyed GHC, Scala 2 and 3, Rust, OCaml), SAT/SMT solvers
(CVC5, Z3) and constraint solvers (Facile, choco-solver). For reasons of space, this content is moved
in Appendix A.

6.2 Mutable and Persistent Interfaces

Our API provides a mutable interface: mutation operations modify the input store directly:
update : store * params -> unit. Another choice would be to provide a persistent interface,
where mutation operations leave the input store unchanged, and return another store containing
the modi�cation. We write pstore to emphasize that the store is persistent:

val update : pstore * params -> pstore

Functional programming typically encourages persistent data structures, whose transparential
referency helps for program reasoning. Using linear types (when provided by the source language)
can provide similar bene�ts for mutable interfaces, reformulated using a linear function that
consumes its input:

val update : store * params ⊸ store

Conversely, the mutable (or linear) interface is often preferred for performance reasons. Some
structures have e�cient persistent implementations, but other structures have mutable versions
with better complexity or noticeably lower constant factors. In the case of Store, the mutable API

5https://github.com/rust-lang/ena/blob/12584218/src/undo_log.rs
6We studied the OCaml library kcas [Karvonen, 2024], the (C) STM implementation in the GHC runtime [Harris and Marlow,

2004], the Scala implementation in the Zio library [Goes, 2019], and the Go implementation vMVCC [Chang, 2023; Chang,

Jung, Sharma, Tassarotti, Kaashoek, and Zeldovich, 2023].

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

http://facile.recherche.enac.fr/
https://archive.softwareheritage.org/swh:1:cnt:c18a6b19aeff7b5e908074eaa9784e3cbca16166;origin=https://github.com/rust-lang/ena;visit=swh:1:snp:62d1f93bd4ac1b78acaadfa8cabd5b7afe0b1d40;anchor=swh:1:rev:12584218ad07500de8499a216279c8cee51acf29;path=/src/undo_log.rs

248:24 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

makes snapshot capture explicit, instead of forcing the result of every update to be persistent,
enabling record elision as a key optimization.

Some implementations expose a persistent interface only, but rely on reference-counting schemes
to know when the input store is uniquely owned, and perform a mutable update in that case –
they dynamically switch to the linear API. See for example Puente [2017], Stokke [2018], or the
Functional but In-Place style popularized by Koka [Reinking, Xie, Moura, and Leijen, 2021]. This
has the potential to be a “best of both worlds” solution, but only in systems where the cost of
reference counting is already paid by the runtime or accepted as standard practice – it is a di�use
cost that must be paid by all users to enable this capability.

6.3 Transient Views of Persistent Data Structures

Some persistent data structures provide a transient view into the data structure, on which muta-
ble updates can be applied imperatively, which can then be turned back into a persistent state:

val transient : pstate -> state

val persistent : state -> pstate

val mutably : (* higher-order combinator *)

pstate -> (state -> unit) -> pstate

The transient combinator can be used, for example, to e�ciently add a lot of elements at once
into a persistent collection. This is a pattern popularized by the Clojure community [Hickey and
contributors, 2024], based on seminal ideas by Bagwell [2001]. Transient data structures can be
found in many languages. For example, transient vectors and hash-maps can be found in Scala’s
standard library, but also in the JavaScript library immutable.js [Byron, 2024], and in the Python
library pyrsistent [Gustafsson, 2023]. The C++ library immer [Puente, 2017] provides transients
Relaxed Radix Balanced (RRB) vectors.

Our interface is the other way around: we expose the mutable API by default, but our snapshots
are persistent, letting users capture persistent versions at points of interest in their code, typically
around an operation they may want to backtrack over.
The two styles are equally expressive: we can implement a persistent store API with transient

views, and conversely a mutable-with-snapshot API can be built on top of persistent-with-transient-
views APIs. Our work focuses on enabling forms of persistence for data structures that are typically
provided with a mutable API only, with an easy migration path for existing users.

6.4 State-of-the-Art Algorithms

Our work provides an easy way to equip an imperative data structure with backtracking – more
generally, persistent snapshots. We of course do not expect the result to be competitive with
specialized algorithms.

The standard complexity of a Union-Find implementation is$ (=U (=)) for a sequence of = union

and find operations, with a $ (log=/log log=) worst-case complexity for each operation in the
sequence. If we require backtracking support (an operation to undo the last union operation),
Westbrook and Tarjan [1989] prove a lower-bound of Ω(= log=/log log=) for = operations, and
Apostolico, Italiano, Gambosi, and Talamo [1994] provide an optimal implementation providing an
$ (log=/log log=) worst-case bound per union and find operation, with a total space cost of$ (=)
for the whole sequence of operations. Their backtrack : graph -> int -> unit operation runs
in time $ (1), and it is in fact able to undo the = most recent union operations.

We have not implemented this algorithm, nor are we aware of existing implementations, but our
intuition is that this algorithm would have noticeably higher constant factors than the traditional
Union-Find implementation. In contrast, our approach requires no new algorithmic expertise (except
to implement our Store library once and for all), it provides a much worse complexity of $ (=) for
the backtracking operation (that is infrequent in the workloads we are considering, relatively to

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:25

find and get queries), and very low constant factor overheads for existing operations – which
are performance-critical for our workloads. Our space overhead is $ (=), as with state-of-the-art
algorithms.

Demaine, Langerman, and Price [2008] present a persistent trie data structure, which is unrelated
to our current interest, but it is of interest to us for two reasons. First, to our non-expert knowledge
it presents a state-of-the-art implementation of persistent dynamic arrays (which can be resized
dynamically), using a sophisticated “rebuilding” approach to interleave resizing work with updates
– if you know of Okasaki’s technique to amortize the reversal of a list to implement a persistent
queue, think of a much harder version of this idea. Second, it contains a very useful, detailed
discussion of notions of persistence used in algorithmic research, which we tried to summarize in
our introduction. Coming back to persistent (resizable) arrays: the standard approach for persistent
arrays comes from Dietz [1989], where each access operation has cost $ (log log=) in expectation
(it is randomized), where = is the total number of operations performed so far. This dependence on
the number of operations is problematic for many use-cases, including ours – we only have such
a dependence on backtrack operations, and want to avoid them on access operations. Demaine,
Langerman, and Price [2008] lower it to $ (log logΔ), where Δ is the total size of the array.

Driscoll, Sarnak, Sleator, and Tarjan [1989] expose generic techniques to add partial persistence
and full persistence to existing data structures. These techniques are not encapsulated as libraries,
they require changing the data structure and its operations in a systematic way. They apply to
all data structures that can be seen as a graph of nodes with bounded in-degree – there is a global
bound on the number of parents of each node. They are designed to provide $ (1) access to any
version in the tree, and typically have higher constant factors than we would like. As it happens,
the usual Union-Find data structure does not have bounded in-degree, as an arbitrary number of
nodes can point to the same representative.

6.5 Static Checking and Formal Verification

Conchon and Filliâtre [2008] present a static checking discipline for semi-persistent data structures,
based on ghost updates in Why3, a programming language designed for deductive veri�cation.
One could also use linear types or unique ownership to capture semi-persistence. Our OCaml
implementation performs no static checking, but we invalidate our data structures at runtime in
such a way that incorrect use results in a clear dynamic failure rather than unspeci�ed behavior.

Conchon and Filliâtre [2007] propose persistent arrays and a persistent Union-Find library written
in OCaml, and verify them in Coq. (The Union-Find implementation is built on the persistent arrays,
so in particular it has bad liveness properties, it retains the memory of all nodes forever.) They
use a shallow embedding of OCaml in Coq with an explicit heap, and express speci�cations
using dependent types. This approach leads to verbose speci�cations. On the contrary, we bene�t
from Separation Logic and provide simpler speci�cations. Conchon and Filliâtre [2007] verify the
termination of functions of the library, which we do not. We are con�dent that we can enhance
our speci�cations and proofs with time credits [Charguéraud and Pottier, 2019] to verify both the
termination and the time complexity of our implementation. Our proof does establish that the
version graph remains acyclic, which is the key argument needed for termination.

Moine, Charguéraud, and Pottier [2022] propose the only formal veri�cation of a transient data
structure that we are aware of. They verify both functional correctness and time complexity of a
transient stack in Separation Logic, using CFML [Charguéraud, 2022]. They represent the shared
mutable state between snapshots using a dedicated assertion. Thanks to Iris support for monotone
ghost state, we do not need such an assertion: our speci�cations are simpler.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

248:26 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

7 Future Work

Veri�cation. We veri�ed the persistent core of Store, forcing us to build a precise model of the
subtle implementation. In order of expected di�culty, next steps are �rst, to include complexity
bounds in the speci�cations, and second, to extend the mechanized proofs to the semi-persistent
API, which requires invalidating snapshots (and transactions).

Custom operations. Store currently supports a single mutable datatype, namely references. This
is enough, as all mutable datatypes can be built on top of mutable references. For example, one can
de�ne a snapshottable dynamic array as a store reference over an array of store references, and
build snapshottable hashtables on top of it.

We believe however that some datatypes would bene�t performance-wise from being integrated
more directly into our stores, by extending our version nodes with higher-level operations – adding
a value to a dynamic array, writing a table at a given key, etc.

We are planning to use Store in the Alt-Ergo SMT solver [Bury, Clément, Coquereau, Conchon,
Contejean, Olivera, El Hara, Iguernlala, Lescuyer, Mebsout, Roux, and Villemot, 2015], which would
require support for custom operations.
One could of course hardcode such higher-level operations in the Store implementation (the

backtrackable trail of Z3 is hardcoded in this way), but we would prefer to let users de�ne “custom
operations” following a certain abstract interface (the context-dependent objects of CVC5 provide
this). We have started working on this abstract interface and played with several iterations of this
idea; in particular, we believe that it is possible to combine custom operations with record elision.
A di�culty is to �nd the right balance between generality and performance: some interfaces are
more expressive than others, but they su�er from higher constant factors.

Con�uence. Consider a user manipulating two snapshottable union-�nd graphs, each with its
own store. They may decide to “merge” the graphs together – and start unifying nodes from
both sides. We do not provide support for this. It is possible to just keep a product of stores, and
restore/capture them together (rustc does this), but better support for this use-case could be useful
in some scenarios – that we have not encountered yet.

Rebuilding. Journaled implementations, including Store, are optimized for “single-threaded”
computations where switching from one snapshot to another is rare. Their performance breaks
down if trying, for example, to evolve two di�erent versions in lockstep. This is a limit to the
generality of our implementation. Improving on this probably requires being able to track several
copies of the “global state” simultaneously. For example, one could ask to rebuild a given snapshot, a
costly operation that would turn it into an independent copy of the state – in particular, its validity
would not depend on active transactions anymore.

The algorithmics literature studies how to perform this rebuilding implicitly, whenever edit chains
become long enough that it is worth it – see in particular Chuang [1994, 1992]. This introduces
other costs, in particular in space, and makes it harder for users to reason about performance. We
would rather keep this an explicit operation.

Our current implementation choice, where each reference really has a unique �eld storing its
current state – instead of being an index into a copiable structure – is in tension with rebuilding,
we do not see how to do it. It seems challenging to o�er this capability without hurting constant
factors and/or our memory-liveness properties (Section 2.5).

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

Snapsho�able Stores 248:27

Acknowledgments

François Pottier implemented unionFind, a Union-Find library parametrized over a notion of store,
which was used to provide persistent and ephemeral store, and a version providing non-nested
backtracking. This library is used in Inferno, a type-inference library used for research prototypes.
Gabriel Scherer worked with Olivier Martinot to implement GADTs in Inferno, which brought

the need for nested backtracking as a new “store” instance for unionFind. This motivated the
�rst, semi-persistent version of Store, written by Gabriel Scherer and described in Scherer [2023].
Providing a persistent implementation while keeping record elision was noted as an interesting
open problem. Jean-Christophe Filliâtre and François Pottier provided interesting feedback on the
�rst iteration of this work, along with anonymous reviewers who pushed us to write benchmarks.

Basile Clément got interested in Store from previous experience with backtracking structures as
the current maintainer of the SMT Solver Alt-Ergo. He realized that the implementation technique
of Baker (see Section 2.1), popularized in the OCaml community by Conchon and Filliâtre [2007],
could be used to provide a persistent implementation for store. Basile Clément wrote a second,
better, persistent implementation, which then grew up to become the version described in this
paper. He also implemented its Monolith model (see Section 5.1) which later proved invaluable
in evolving both the API and the implementation. Gabriel Scherer and Basile Clément worked on
cleaning up the implementation, understanding and resolving advanced questions – in particular
the meaning of generations, and what kind of combinations of the persistent and semi-persistent
APIs could be allowed, documentation (with help from Guillaume Bury), a detailed documentation
of the implementation (essentially an informal correctness proof as OCaml comments). A �rst
version of the micro-benchmarks was written by Gabriel Scherer, but the vast majority of the work
was done afterwards by Basile Clément, as repeated cycles of analysis of the results, improvements
and bias-�xing. The macro-benchmarks were done by Gabriel Scherer in the process of preparing
the present article.
The Store implementation raises an interesting question for program veri�cation – a mutable

data-structure exposing a persistent model. Clément Allain and Alexandre Moine joined the project
with their Coq+Iris expertise. Alexandre Moine veri�ed the persistent core of Store, without
generations and record elision. Clément Allain wrote a second iteration with a �ner-grained
model that also covers generations and record elision. (We have not attempted to formalize the
transactional/semi-persistent part of Store.)
The Coq section of the paper was written by Alexandre Moine with help from Clément Allain;

Basile Clément wrote the micro-benchmark section; the rest is mostly from Gabriel Scherer.
After submission, we sent a draft version of this article to François Pottier who provided excellent

feedback – together with our anonymous reviewers. Shortly after, François Pottier proposed a
di�erent Coq presentation of the Store API, where ownership of the reference values in the current
version is carried by special points-to predicates, instead of being centralized in a global map. This
is a scienti�c contribution of independent interest, but unfortunately we received it too late to
include it in the current publication. We hope that it gets its own exposition, possibly in the context
of a follow-up on future work.

A Bespoke Implementations in Types, Solvers

We surveyed implementations of snapshottable stores hidden inside type checkers (we surveyed
GHC, Scala 2 and 3, Rust, OCaml), SAT/SMT solvers (CVC5, Z3) and constraint solvers (Facile,
choco-solver).

Type checkers. The GHC type-checker does not implement backtracking of any form.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/unionFind
https://gitlab.inria.fr/fpottier/monolith
http://facile.recherche.enac.fr/

248:28 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

The Scala 2 type-checker implements journaled backtracking for its type inference variables,
a simple semi-persistent implementation with a global list of undo actions.7. No record elision.
Interestingly, another custom undo log is maintained in the function inliner – the project could
bene�t from generic snapshottability support.

The Scala 3 type-checker implements a snapshot/restore interface for the entire type-checking
state8, but the snapshot logic is intentionally trivial as all this state is maintained in fully persistent
data structures. (Looking for use-cases of the snapshot function shows all the places where the
type-checker resorts to backtracking.)

The Rust type-checker implements “undo logs” for its mutable state, using the undo_log module
of the ena crate we mentioned earlier. Because undo logs are homogeneous, di�erent components
of the type-checking state are stored in di�erent undo logs. A module in the type-checker gathers
all these logs9, with a single function to snapshot and restore them all at once.

The OCaml type-checker implements a snapshottability mechanism for its type variables, whose
implementation is also inspired by (or a rediscovery of) Baker.10. The implementation seems to
support full persistence, but it seems that it is only used in a semi-persistent way in the compiler
codebase. This implementation performs a simpli�ed form of record elision, based on the birth
date of the reference rather than the timestamp or generation of its last write. Indeed, each type
variable has a unique identi�er implemented as consecutive integers starting at 0, which can also
serve as a “birth date” for the type variable. The snapshot implementation tracks the value of the
type identi�er counter when the last snapshot was taken. When performing a write on a type, it
performs record elision if the type has a higher identi�er than the last snapshot – it was created
after the snapshot was taken. This heuristic is less precise than our record elision, but it comes
for free once type identi�ers are there. It seems fairly e�ective for a type-checker due to a sort of
generational phenomenon: most type variables are modi�ed a lot shortly after they are created,
and more rarely afterward. (Disabling this form of elision makes type-checking about 5% slower on
some �les of the compiler codebase.)

Constraint solvers and SAT/SMT solvers. Based on discussions with implementors of automated
theorem projects, we conjecture that all SMT solvers include some version of a general snapshot-
table store – but of course they did not tell anyone until we explicitly asked them. The only explicit
mention we found is in the recent overview paper on CVC5 [Barbosa, Barrett, Brain, Kremer,
Lachnitt, Mann, Mohamed, Mohamed, Niemetz, Nötzli, Ozdemir, Preiner, Reynolds, Sheng, Tinelli,
and Zohar, 2022], which describes “Context-Dependent Data Structures” (Section 2.4)11, and cur-
rently supports context-dependent maybe/option values, append-only lists, dequeues, insert-only
hashsets, and hashmaps. Z3 simply adds support for adding arbitrary edit events on the “trail”, and
does not seem to support record elision.12 The implementations in SMT solvers are semi-persistent,
and their API is in�uenced by the internal vocabulary of SAT search algorithms; typically, one does
not backtrack to a given snapshot, but to a “decision level”.

Constraint-based solvers seem to also implement semi-persistent snapshottable structures, and
we have found implementations of record elision, which is relatively natural in the semi-persistent

7https://github.com/scala/scala/blob/2429854/src/re�ect/scala/reflect/internal/tpe/TypeConstraints.scala#L26-L76
8https://github.com/scala/scala3/blob/0e36424/compiler/src/dotty/tools/dotc/core/TyperState.scala#L29-L43
9https://github.com/rust-lang/rust/blob/9afdb8d1/compiler/rustc_infer/src/infer/undo_log.rs#L19-L32
10https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L490-L514, https://github.com/ocaml/ocaml/blob/572a

eb5f/typing/types.ml#L755-L759, https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L851-L874
11https://github.com/cvc5/cvc5/blob/92caabc7/src/context/context.h
12https://github.com/Z3Prover/z3/blob/2880ea39/src/util/trail.h

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://archive.softwareheritage.org/swh:1:cnt:6d74d05d47a538887826ffe0bf28558c1b86f74c;origin=https://github.com/scala/scala;visit=swh:1:snp:2e1ea09e305db5bd7bd5d99f4c9a47ef0ad1877f;anchor=swh:1:rev:242985416e9b02d0f5567459adff40525d01b0b9;path=/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala;lines=22-76
https://archive.softwareheritage.org/swh:1:cnt:160d7749de61df27c93c82c00c559661868e6074;origin=https://github.com/scala/scala3;visit=swh:1:snp:05d546e5c183261c0fa38c7770408dbc5bb7e0a4;anchor=swh:1:rev:0e3642433952cabce6b5469fcaededa52b8394b9;path=/compiler/src/dotty/tools/dotc/core/TyperState.scala;lines=29-43
https://archive.softwareheritage.org/swh:1:cnt:829b0a73a0df5d94ece065dd503ed689c692df44;origin=https://github.com/rust-lang/rust;visit=swh:1:snp:a65b1909ca0aaad8f044213ab429940a5aa54436;anchor=swh:1:rev:9afdb8d1d55f7ee80259009c39530d163d24dc65;path=/compiler/rustc_infer/src/infer/undo_log.rs;lines=19-32
https://archive.softwareheritage.org/swh:1:cnt:997e78d4923fb444982410ebd80a5490934dc63a;origin=https://github.com/ocaml/ocaml/;visit=swh:1:snp:d220c655479a249a7ec92bb112863fea566774b7;anchor=swh:1:rev:572aeb5f06b75fcd85e6f6f30c9e421e2e3fbcfa;path=/typing/types.ml;lines=490-514
https://archive.softwareheritage.org/swh:1:cnt:997e78d4923fb444982410ebd80a5490934dc63a;origin=https://github.com/ocaml/ocaml/;visit=swh:1:snp:d220c655479a249a7ec92bb112863fea566774b7;anchor=swh:1:rev:572aeb5f06b75fcd85e6f6f30c9e421e2e3fbcfa;path=/typing/types.ml;lines=755-759
https://archive.softwareheritage.org/swh:1:cnt:997e78d4923fb444982410ebd80a5490934dc63a;origin=https://github.com/ocaml/ocaml/;visit=swh:1:snp:d220c655479a249a7ec92bb112863fea566774b7;anchor=swh:1:rev:572aeb5f06b75fcd85e6f6f30c9e421e2e3fbcfa;path=/typing/types.ml;lines=755-759
https://archive.softwareheritage.org/swh:1:cnt:997e78d4923fb444982410ebd80a5490934dc63a;origin=https://github.com/ocaml/ocaml/;visit=swh:1:snp:d220c655479a249a7ec92bb112863fea566774b7;anchor=swh:1:rev:572aeb5f06b75fcd85e6f6f30c9e421e2e3fbcfa;path=/typing/types.ml;lines=851-874
https://archive.softwareheritage.org/swh:1:cnt:d770f9f17772ac567feafcf9e8e56ca55e04ecba;origin=https://github.com/cvc5/cvc5;visit=swh:1:snp:817ced9a685a63b098f95e043b116db1c3990ce3;anchor=swh:1:rev:92caabc77cf8b347cadf1517c75b2af2357d419c;path=/src/context/context.h
https://archive.softwareheritage.org/swh:1:cnt:43e6982342c1ec7f2903a66fd9e178d220f83628;origin=https://github.com/Z3Prover/z3;visit=swh:1:snp:fc295a9133e66dcc499b67b3690fd0c385733343;anchor=swh:1:rev:2880ea39719971226e616d1077788288d6107632;path=/src/util/trail.h

Snapsho�able Stores 248:29

case. We mentioned Facile, an OCaml implementation, but for example the Java constraint solver
choco-solver also has support for generic “trails”, and performs record elision13.

B Macrobenchmarks Details

This appendix contains the full details on the macrobenchmarks mentioned in Section 5.3.

B.1 System F Type-Checking in ttps://gitlab.inria.fr/fpo�ier/infernoInferno

The Inferno project implements type-inference for a small ML language, and for well-typed terms it
produces a “witness” or an “elaboration”, which is an explicitly-typed version of the input program
in a variant of System F. Inferno includes a type-checker for this explicitly language, which is much
simpler than type inference and can be used to catch bugs in the type inference machinery.
This explicit type checker uses a Union-Find data structure to check equality between types.

We worked on a prototype extension of Inferno with GADTs, which required to add backtracking
to the Union-Find graph of System F types to support local type-equality assumptions that are
undone when leaving the scope of a GADT equation.
This was our initial motivation for implementing Store, and an ideal scenario for journaled

implementations. Vector is a bad choice because we are in the “large support” worst-case: most
backtracking points (that is, pattern-matching clauses containing GADTs) are short-lived and
modify only a few Union-Find nodes. On the other hand, Map introduces an important overhead,
even when the code does not use GADTs.

Now that we have Store implemented we can replace Vector with it and compare performance.
We use Inferno’s own performance test, which is to generate a large random term (with a generator
design to produce well-typed terms), infer its type and check its explicitly-typed version.
The results in Figure 7a show that in this real program performing many other operations

than Store operations, using Vector is 1.3× slower than using our Store implementation, and
using Map is 4.2× slower. Adopting Store is easy and comes with a direct, noticeable performance
improvement.
The large random term type-checked in the test above does not contain any GADTs14 (the

random generator does not know about them), so no snapshots are actually taken when running
this test. This is a best case for Vector – it does not su�er from the “large support” situation.

We do not have good, representative test programs that contain a reasonable frequency of GADT
constructs, but as a limit case we checked the performance of the type-checker on a small GADT
example – a very short program that only checks GADT features, checked 1000 times in a loop. The
results (below) should be taken with a grain of salt, as this is closer to microbenchmark territory
again. For this limit test shown in Figure 7b, the System F type-checker remains 4× slower with
Map than with Store, but using Vector now performs terribly, almost 70× slower, due to the “large
support” situation.

B.2 System F Type Inference with GADTs (Inferno)

The previous test measures the performance of type-checking of explicitly-typed terms in Inferno.
Inferno also uses a Union-Find data structure during inference of ML terms, performing inference
via uni�cation as usual. As we explained previously, Inferno implements a transactional behavior
for uni�cation of types: a single uni�cation constraint is decomposed in many variable-variable

13https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/En

vironmentTrailing.java, https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolve

r/memory/trailing/StoredInt.java#L33-L48
14The implementation of the type-checker must support GADTs, and thus use a snapshottable store. For this speci�c

benchmark without GADTs, we tried using built-in references out of curiosity, and the performance is the same as Store.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

http://facile.recherche.enac.fr/
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://archive.softwareheritage.org/swh:1:cnt:1a12d805aae1e516bdc9f190fbd2fdb86eff5f4c;origin=https://github.com/chocoteam/choco-solver;visit=swh:1:snp:c3d6a758bc11c52c02258b86fd0ae2be967239ff;anchor=swh:1:rev:b4bf328006a560b1cdd029bea47d3ce697b73d29;path=/solver/src/main/java/org/chocosolver/memory/trailing/EnvironmentTrailing.java
https://archive.softwareheritage.org/swh:1:cnt:1a12d805aae1e516bdc9f190fbd2fdb86eff5f4c;origin=https://github.com/chocoteam/choco-solver;visit=swh:1:snp:c3d6a758bc11c52c02258b86fd0ae2be967239ff;anchor=swh:1:rev:b4bf328006a560b1cdd029bea47d3ce697b73d29;path=/solver/src/main/java/org/chocosolver/memory/trailing/EnvironmentTrailing.java
https://archive.softwareheritage.org/swh:1:cnt:03ddb5048a1df3dbc779f83553b5c970161e97cb;origin=https://github.com/chocoteam/choco-solver;visit=swh:1:snp:c3d6a758bc11c52c02258b86fd0ae2be967239ff;anchor=swh:1:rev:86f712e9608e4b8034715236c0482f3cd721540d;path=/solver/src/main/java/org/chocosolver/memory/trailing/StoredInt.java;lines=33-48
https://archive.softwareheritage.org/swh:1:cnt:03ddb5048a1df3dbc779f83553b5c970161e97cb;origin=https://github.com/chocoteam/choco-solver;visit=swh:1:snp:c3d6a758bc11c52c02258b86fd0ae2be967239ff;anchor=swh:1:rev:86f712e9608e4b8034715236c0482f3cd721540d;path=/solver/src/main/java/org/chocosolver/memory/trailing/StoredInt.java;lines=33-48

248:30 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

uni�cations, but if any of those fail, we revert all changes to the inference state caused by this
uni�cation constraint in order to generate clear error messages. We measure the type-inference
work for (again) a large randomly-generated ML term, with our Union-Find graph instantiated by
di�erent store implementations.

This workload has a relatively high number of backtracking points, most of which perform little
work (most type-type uni�cation are on small types that perform few variable-variable uni�cations).
This workload is a worst-case scenario for full-copy implementations such as Vector, but it is
a best case for full-persistence implementations such as Map. There are no nested transactions,
so François Pottier’s TransactionalRef implementation can be used – in fact, it was designed
precisely for this use-case, so it is the gold standard for this test.
We see in Figure 7c that Store has the same performance as TransactionalRef despite being

much more general; Map is much slower, and Vector is unacceptably slow.

B.3 Random Generation of Well-Typed Programs

This macrobenchmark comes from an independent research project, also related to type-inference
but with a codebase separate from Inferno. The program is a research prototype exploring the use
of constraint-based type inference for random generation of well-typed programs. The overall idea
is that instead of writing random generators that contain typing-checking logic to guarantee well-
typedness, we can combine a type-agnostic program generator and a random-generation-agnostic
typechecker by interleaving random generation steps with constraint-solving step. For more details,
see a preliminary technical report at Scherer [2024], which links to our prototype implementation.
In this program, the entire state of the constraint solver is persistent. We can express this

using our persistent snapshots. In contrast, it would be fairly di�cult to use the semi-persistent
API in a structured way, because the random generation is provided by a search monad using
a standard interface, which does not provide callback points for backtracking operations. This
example validates the expressivity bene�ts of the persistent API.

The workload contains a very high number of backtracking points (one per term-former in the
AST of the generated program), with relatively few operations on the solver state in-between.
This is a best case for a full-persistence implementation such as Map, but we see in Figure 7d that
using Store instead still provides clear performance bene�ts: we measured a 27% performance
improvement on a speci�c run of the random term generator.

B.4 Sudoku Solver

We wanted to test backtracking programs that are not doing type-checking of any form. We are
interested in using Store in SAT or SMT context, but SAT/SMT engines have deeply ingrained
forms of backtracking and it is not so easy to port existing solvers to Store. Instead we looked for
Sudoku solvers written as constraint-solving programs, which are typically simpler. We found an
OCaml implementation of a Sudoku solver15 written by Alain Frisch in 2005 with performance in
mind, and we adapted it to use Store.
A constraint-based Sudoku solver operates on a “board state”, which tracks the possible values

(the “domain”) of each board position. Whenever the domain of a board position is re�ned, we
propagate constraints to other positions whose domain could be re�ned in turn (in the same row,
column or block). Once all constraints have been propagated fully, we have to perform backtracking:
choose a yet-undetermined position, and try each of the possible value of its domain – backtracking
any state change after each attempt fails. Sudoku solvers must represent the board state e�ciently

15http://alain.frisch.fr/sudoku.html

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.inria.fr/fpottier/inferno
http://alain.frisch.fr/sudoku.html

Snapsho�able Stores 248:31

(this solver uses an array of integers, where integers are used as bitsets to represent the domains),
propagate constraints e�ciently, and use good heuristics to decide which position to backtrack on.
Alain Frisch’s Sudoku solver uses a hand-crafted “full copy” implementation, that copies the

full board state at each backtracking point. The implementation is careful about reusing bu�ers to
avoid allocations when possible. The state is �xed and relatively small, so copy is cheap – we used
a test benchmark on a 25×25 sudoku board, so the state is an array of 625 integers.

base is Alain Frisch’s hand-crafted implementation, and it remains the fastest. Store adds
20% overhead. Store (persistent) uses our persistent API rather than our semi-persistent API;
it performs slightly worse at 30% overhead. Finally, Vector is 3× slower. Vector is noticeably
slower because it induces a memory representation that is less compact than the hand-written
implementation16 and cannot reuse bu�ers.
Our conclusion is that even though Store does not beat a hand-crafted full-copy implementa-

tion of backtracking in this case, its low overhead remains acceptable on backtracking-intensive
programs. Using Store instead of carefully copying temporary bu�ers may be a good deal for some
programmers.

References

Clément Allain, “Mechanization of the snapshottable store with record elision and without transactions,” part of The

Zoo project 2024. url: https : / /github.com/clef -men/zoo/blob/ icfp2024/theories/persistent/pstore_2.v, swhid:

⟨swh:1:cnt:e637417fb4af3a462caa063a575e97905d32800b⟩.
Alberto Apostolico, Giuseppe F. Italiano, Giorgio Gambosi, and Maurizio Talamo. 1994. “The Set Union Problem with

Unlimited Backtracking.” SIAM Journal on Computing, 23, 1, 50–70.

Phil Bagwell. 2001. Ideal Hash Trees. Tech. rep. EPFL. http://infoscience.epfl.ch/record/64398.

Henry G. Baker. July 1978. “Shallow binding in Lisp 1.5.” Communications of the ACM, 21, 7, (July 1978), 565–569. doi:

10.1145/359545.359566.

Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,

Cesare Tinelli, and Yoni Zohar. 2022. “cvc5: A Versatile and Industrial-Strength SMT Solver.” In: Tools and Algorithms

for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part

I (Lecture Notes in Computer Science). Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Springer, 415–442. doi:

10.1007/978-3-030-99524-9_24.

Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. Sept. 2002. “Two Simpli�ed

Algorithms for Maintaining Order in a List.” In: Proceedings of the 10th Annual European Symposium on Algorithms (ESA

2002) (Lecture Notes in Computer Science). Vol. 2461. (Sept. 2002), 152–164.

Guillaume Bury, Basile Clément, Albin Coquereau, Sylvain Conchon, Evelyne Contejean, Steven de Olivera, Hichem

Rami Ait El Hara, Mohamed Iguernlala, Stephane Lescuyer, Alain Mebsout, Mattias Roux, and Pierre Villemot. 2015. the

Alt-Ergo SMT solver. (2015). https://alt-ergo.ocamlpro.com/.

Lee Byron, Immutable.js library for JavaScript version 4.3.5, 2024. url: https://github.com/immutable-js/immutable-js/,

swhid: ⟨swh:1:rev:d7664bf9d3539da8ea095f2ed08bbe1cd0d46071⟩.

Yun-Sheng Chang, vMVCC 2023. url: https://github.com/mit-pdos/vmvcc/blob/116f2a360d4390896cf042547caf757ab881e0

2a/wrbuf/wrbuf.go, swhid: ⟨swh:1:dir:49034898d0dbbad741eadffa4501896fc17fb635⟩.
Yun-Sheng Chang, Ralf Jung, Upamanyu Sharma, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. July 2023.

“Verifying vMVCC, a high-performance transaction library using multi-version concurrency control.” In: OSDI. (July

2023).

Arthur Charguéraud. 2022. The CFML tool and library. http://www.chargueraud.org/softs/cfml/. (2022).

Arthur Charguéraud and François Pottier. Mar. 2019. “Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits.” Journal of Automated Reasoning, 62, 3, (Mar. 2019), 331–365.

http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf.

16To measure the importance of the compact memory implementation, we replaced the int array implementation of Alain

Frisch by an exactly equivalent int ref array implementation, introducing one indirection in the memory represent. This

introduces a 48% overhead, larger than Store.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://github.com/clef-men/zoo/blob/icfp2024/theories/persistent/pstore_2.v
http://archive.softwareheritage.org/swh:1:cnt:e637417fb4af3a462caa063a575e97905d32800b;origin=https://github.com/clef-men/zoo;visit=swh:1:snp:df37b70d375bc2ba16a62d8b312132535b650987;anchor=swh:1:rev:831705d2a577c5807061d707f2375bf4395fa4da;path=/theories/persistent/pstore_2.v
http://infoscience.epfl.ch/record/64398
https://doi.org/10.1145/359545.359566
https://doi.org/10.1007/978-3-030-99524-9_24
https://alt-ergo.ocamlpro.com/
https://github.com/immutable-js/immutable-js/
http://archive.softwareheritage.org/swh:1:rev:d7664bf9d3539da8ea095f2ed08bbe1cd0d46071;origin=https://github.com/immutable-js/immutable-js;visit=swh:1:snp:b931532bca621cdee9928bc69a52af8409ac294a
https://github.com/mit-pdos/vmvcc/blob/116f2a360d4390896cf042547caf757ab881e02a/wrbuf/wrbuf.go
https://github.com/mit-pdos/vmvcc/blob/116f2a360d4390896cf042547caf757ab881e02a/wrbuf/wrbuf.go
http://archive.softwareheritage.org/swh:1:dir:49034898d0dbbad741eadffa4501896fc17fb635;origin=https://github.com/mit-pdos/vmvcc;visit=swh:1:snp:c8f0eb00ef035e73a9f733f9614d6117ef65791d;anchor=swh:1:rev:116f2a360d4390896cf042547caf757ab881e02a;path=/wrbuf/
http://www.chargueraud.org/softs/cfml/
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf

248:32 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Tyng-Ruey Chuang. 1994. “A randomized implementation of multiple functional arrays.” In: ACM conference on LISP and

functional programming, 173–184.

Tyng-Ruey Chuang. 1992. “Fully persistent arrays for e�cient incremental updates and voluminous reads.” In: ESOP ’92: 4th

European symposium on programming, 110–129.

Basile Clément and Gabriel Scherer, Store 2023. url: https://gitlab.com/basile.clement/store/-/tree/37a14f538e75eea3de930a

797623e7f7fd036948, swhid: ⟨swh:1:rev:37a14f538e75eea3de930a797623e7f7fd036948⟩.

Sylvain Conchon and Jean-Christophe Filliâtre. Oct. 2007. “A Persistent Union-Find Data Structure.” In: ACM SIGPLAN

Workshop on ML. ACM Press, Freiburg, Germany, (Oct. 2007), 37–45. http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.pdf.

Sylvain Conchon and Jean-Christophe Filliâtre. Apr. 2008. “Semi-Persistent Data Structures.” In: 17th European Symposium

on Programming (ESOP’08). (Apr. 2008). http://www.lri.fr/~filliatr/ftp/publis/spds-rr.pdf.

Erik Demaine, Stefan Langerman, and Eric Price. July 2008. “Con�uently Persistent Tries for E�cient Version Control.”

Algorithmica, 57, (July 2008), 462–483. doi: 10.1007/s00453-008-9274-z.

Paul F. Dietz. 1989. “Fully persistent arrays.” In: Algorithms and Data Structures, 67–74.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. 1989. “Making data structures persistent.” Journal of Computer and

System Sciences, 38, 1, 86–124. https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf.

John De Goes, zio-stm 2019. url: https://github.com/zio/zio/blob/ecb38a3bf15b085080f9c092dbbd88091f5ebb32/core/shared

/src/main/scala/zio/stm/TRef.scala, swhid: ⟨swh:1:dir:0b66f0e8e1427d8f8cfd448843f1b838765a17f8⟩.

Tobias Gustafsson, Pyrsistent library for Python version 0.20.0, 2023. url: https://github.com/tobgu/pyrsistent, swhid:

⟨swh:1:rev:827c5c8f6135ee4977ea96e507367904689a2397⟩.
Tim Harris and Simon Marlow, ghc-stm 2004. url: https://github.com/ghc/ghc/blob/f2cc1107790d42fee1a11d5b16bc282d31

ea6f78/rts/STM.c, swhid: ⟨swh:1:cnt:69b00fd127568d33f0da7a8a9f7c140de1bc129f ⟩.
Barry Hayes. Oct. 1997. “Ephemerons: a new �nalization mechanism.” SIGPLAN Not., 32, 10, (Oct. 1997), 176–183. doi:

10.1145/263700.263733.

Hickey and contributors. 2024. Clojure Reference Manual on Transient Data Structures. https://clojure.org/reference/transients.

(2024).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. “Iris from the

ground up: A modular foundation for higher-order concurrent separation logic.” Journal of Functional Programming, 28,

e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf.

Vesa Karvonen, kcas 2024. url: https://github.com/ocaml-multicore/kcas, swhid: ⟨swh:1:dir:a85e74c5bd4e1af9802e0a3fc23

7f1531281ce31⟩.
Alexandre Moine, Arthur Charguéraud, and François Pottier. 2022. “Speci�cation and veri�cation of a transient stack.” In:

Proceedings of the 11th ACM SIGPLAN International Conference on Certi�ed Programs and Proofs (CPP 2022). Association

for Computing Machinery, Philadelphia, PA, USA, 82–99. isbn: 9781450391825. doi: 10.1145/3497775.3503677.

Melissa E. O’Neill and F. Warren Burton. Sept. 1997. “A new method for functional arrays.” J. Funct. Program., 7, 5, (Sept.

1997), 487–513. doi: 10.1017/S0956796897002852.

François Pottier. Sept. 2014. “Hindley-Milner elaboration in applicative style.” In: International Conference on Functional

Programming (ICFP). (Sept. 2014). http://cambium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf.

François Pottier. Feb. 2021. “Strong Automated Testing of OCaml Libraries.” In: JFLA 2021 - 32es Journées Francophones des

Langages Applicatifs. Saint Médard d’Excideuil, France, (Feb. 2021). https://inria.hal.science/hal-03049511.

Juan Pedro Bolívar Puente. Aug. 2017. “Persistence for the masses: RRB-vectors in a systems language.” Proc. ACM Program.

Lang., 1, ICFP, (Aug. 2017). doi: 10.1145/3110260.

Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. “Perceus: garbage free reference counting

with reuse.” In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation (PLDI 2021). Virtual, Canada, 96–111. doi: 10.1145/3453483.3454032.

Gabriel Scherer. 2023. “Backtracking reference stores.” In: JFLA. https://hal.science/hal-03936704.

Gabriel Scherer. 2024. Constrained generation of well-typed programs. Tech. rep. INRIA. https://inria.hal.science/hal-04607309.

Bodil Stokke, im crate in Rust: in-place mutation version 9.0.0, 2018. url: https://docs.rs/im/latest/im/index.html#in-place-m

utation, swhid: ⟨swh:1:rev:71331eadac64654bc56f598647ab544197cb1319⟩.
Je�ery Westbrook and Robert E. Tarjan. 1989. “Amortized Analysis of Algorithms for Set Union with Backtracking.” SIAM

Journal on Computing, 18, 1, 1–11. doi: 10.1137/0218001.

Received 2024-02-28; accepted 2024-06-18

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 248. Publication date: August 2024.

https://gitlab.com/basile.clement/store/-/tree/37a14f538e75eea3de930a797623e7f7fd036948
https://gitlab.com/basile.clement/store/-/tree/37a14f538e75eea3de930a797623e7f7fd036948
http://archive.softwareheritage.org/swh:1:rev:37a14f538e75eea3de930a797623e7f7fd036948;origin=https://gitlab.com/basile.clement/store.git;visit=swh:1:snp:f381b65f98022dff39b7bfdde7ea1025ef7d1423
http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.pdf
http://www.lri.fr/~filliatr/ftp/publis/spds-rr.pdf
https://doi.org/10.1007/s00453-008-9274-z
https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf
https://github.com/zio/zio/blob/ecb38a3bf15b085080f9c092dbbd88091f5ebb32/core/shared/src/main/scala/zio/stm/TRef.scala
https://github.com/zio/zio/blob/ecb38a3bf15b085080f9c092dbbd88091f5ebb32/core/shared/src/main/scala/zio/stm/TRef.scala
http://archive.softwareheritage.org/swh:1:dir:0b66f0e8e1427d8f8cfd448843f1b838765a17f8;origin=https://github.com/zio/zio;visit=swh:1:snp:52ba63c831d9987ac7d597a06311ebfa23539e27;anchor=swh:1:rev:688e35f3a64a8d0dc03ba397d88e273fd7a4cbe6;path=/core/shared/src/main/scala/zio/stm/
https://github.com/tobgu/pyrsistent
http://archive.softwareheritage.org/swh:1:rev:827c5c8f6135ee4977ea96e507367904689a2397;origin=https://github.com/tobgu/pyrsistent;visit=swh:1:snp:439641ed1fc730cd6c7b26ca28393f4579c7fcdc
https://github.com/ghc/ghc/blob/f2cc1107790d42fee1a11d5b16bc282d31ea6f78/rts/STM.c
https://github.com/ghc/ghc/blob/f2cc1107790d42fee1a11d5b16bc282d31ea6f78/rts/STM.c
http://archive.softwareheritage.org/swh:1:cnt:69b00fd127568d33f0da7a8a9f7c140de1bc129f;origin=https://github.com/ghc/ghc;visit=swh:1:snp:c90664fda9c167111f9853387b0a217185de43aa;anchor=swh:1:rev:f2cc1107790d42fee1a11d5b16bc282d31ea6f78;path=/rts/STM.c
https://doi.org/10.1145/263700.263733
https://clojure.org/reference/transients
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://github.com/ocaml-multicore/kcas
http://archive.softwareheritage.org/swh:1:dir:a85e74c5bd4e1af9802e0a3fc237f1531281ce31;origin=https://github.com/ocaml-multicore/kcas;visit=swh:1:snp:2de8d94dd73842f73129964d50c656e583b4b8de;anchor=swh:1:rev:240981e0ef9e9d5de6801aa8a15b62f73b7a37af
http://archive.softwareheritage.org/swh:1:dir:a85e74c5bd4e1af9802e0a3fc237f1531281ce31;origin=https://github.com/ocaml-multicore/kcas;visit=swh:1:snp:2de8d94dd73842f73129964d50c656e583b4b8de;anchor=swh:1:rev:240981e0ef9e9d5de6801aa8a15b62f73b7a37af
https://doi.org/10.1145/3497775.3503677
https://doi.org/10.1017/S0956796897002852
http://cambium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
https://inria.hal.science/hal-03049511
https://doi.org/10.1145/3110260
https://doi.org/10.1145/3453483.3454032
https://hal.science/hal-03936704
https://inria.hal.science/hal-04607309
https://docs.rs/im/latest/im/index.html#in-place-mutation
https://docs.rs/im/latest/im/index.html#in-place-mutation
http://archive.softwareheritage.org/swh:1:rev:71331eadac64654bc56f598647ab544197cb1319;origin=https://github.com/bodil/im-rs;visit=swh:1:snp:d8fa5b3248696d2d1a4c7bd3b7c2235d7f6ebe41
https://doi.org/10.1137/0218001

	Abstract
	1 Introduction
	1.1 Snapshots as a library
	1.2 Notions of persistence
	1.3 Performance model

	2 A core store
	2.1 Baker's version trees
	2.2 A whiff of graph theory
	2.3 Implementing version trees
	2.4 Record elision
	2.5 Liveness

	3 A Coq store
	3.1 Formal setting
	3.2 Specification
	3.3 High-level ideas of the proof

	4 Semi-persistence through transactions
	4.1 Introduction
	4.2 Transactions for semi-persistence
	4.3 Combining the persistent and semi-persistent APIs
	4.4 Implementing transactions

	5 Testing and benchmarks
	5.1 Testing Store with Monolith
	5.2 Microbenchmarks
	5.3 Macrobenchmarks

	6 Related Work
	6.1 Snapshottable references
	6.2 Mutable and persistent interfaces
	6.3 Transient views of persistent data structures
	6.4 State-of-the-art algorithms
	6.5 Static checking and formal verification

	7 Future Work
	Acknowledgments
	A Bespoke implementations in types, solvers
	B Macrobenchmarks details
	B.1 System F type-checking in Inferno
	B.2 System F type inference with GADTs (Inferno)
	B.3 Random generation of well-typed programs
	B.4 Sudoku solver

