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The release of OCaml 5, which introduced parallelism into the language,6
drove the need for safe and efficient concurrent data structures. New libraries7
like Saturn [26] aim at addressing this need. From the perspective of formal8
verification, this is an opportunity to apply and further state-of-the-art techniques9
to provide stronger guarantees.10

We present a framework for verifying fine-grained concurrent OCaml 5 al-11
gorithms. Following a pragmatic approach, we support a limited but sufficient12
fragment of the language whose semantics has been carefully formalized to13
faithfully express such algorithms. Source programs are translated to a deeply-14
embedded language living inside Coq where they can be specified and verified15
using the Iris [8] concurrent separation logic.16

1 Introduction17

Designing concurrent algorithms, in particular lock-free algorithms, is a notoriously difficult18
task. In this paper, we are concerned with proving the correctness of these algorithms.19

Example 1: physical equality. Consider, for example, the OCaml implementation20
of a concurrent stack [1] in Figure 1. Essentially, it consists of an atomic reference to a21
list that is updated atomically using the Atomic.compare_and_set primitive. While this22
simple implementation—it is indeed one of the simplest lockfree algorithms—may seem easy23
to verify, it is actually more subtle than it looks.24

Indeed, the semantics of Atomic.compare_and_set involves physical equality : if the25
content of the atomic reference is physically equal to the expected value, it is atomically26
updated to the new value. Comparing physical equality is tricky and can be dangerous—this27
is why structural equality is often preferred—because the programmer has few guarantees28
about the physical identity of a value. In particular, the physical identity of a list, or29
more generally of an inhabitant of an algebraic data type, is not really specified. The only30
guarantee is: if two values are physically equal, they are also structurally equal. Apparently,31
we don’t learn anything interesting when two values are physically distinct. Going back32
to our example, this is fortunately not an issue, since we always retry the operation when33
Atomic.compare_and_set returns false.34

Looking at the standard runtime representation of OCaml values, this makes sense. The35
empty list is represented by a constant while a non-empty list is represented by pointer to a36
tagged memory block. Physical equality for non-empty lists is just pointer comparison. It is37
clear that two pointers being distinct does not imply the pointed memory blocks are.38
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type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not @@ Atomic.compare_and_set t old new_ then (

Domain.cpu_relax () ;
push t v

)

let rec pop t =
match Atomic.get t with
| [] -> None
| v :: new_ as old ->

if Atomic.compare_and_set t old new_ then (
Some v

) else (
Domain.cpu_relax () ;
pop t

)

Figure 1. Implementation of a concurrent stack

From the viewpoint of formal verification, this means we have to carefully design the39
semantics of the language to be able to reason about physical equality and other subtleties40
of concurrent programs. Essentially, the conclusion we can draw is that the semantics of41
physical equality and therefore Atomic.compare_and_set is non-deterministic: we cannot42
determine the result of physical comparison just by looking at the abstract values.43

Example 2: when physical identity matters. Consider another example given in44
Figure 2: the Rcfd.close1 function from the Eio [27] library. Essentially, it consists in45
protecting a file descriptor using reference counting. Similarly, it relies on atomically updating46
the state field using Atomic.Loc.compare_and_set2. However, there is a complication.47
Indeed, we claim that the correctness of close derives from the fact that the Open state48
does not change throughout the lifetime of the data structure; it can be replaced by a49
Closing state but never by another Open. In other words, we want to say that 1) this Open50
is physically unique and 2) Atomic.Loc.compare_and_set therefore detects whether the51
data structure has flipped into the Closing state. In fact, this kind of property appears52
frequently in lockfree algorithms; it also occurs in the Kcas [25] library3.53

Once again, this argument requires special care in the semantics of physical equality. In54
short, we have to reveal something about the physical identity of some abstract values. Yet,55
we cannot reveal too much—in particular, we cannot simply convert an abstract value to a56
concrete one (a memory location)—, since the OCaml compiler performs optimizations like57
sharing of immutable constants, and the semantics should remain compatible with adding58
other optimizations later on, such as forms of hash-consing.59

1https://github.com/ocaml-multicore/eio/blob/main/lib_eio/unix/rcfd.ml
2Here, we make use of atomic record fields that were recently introduced in OCaml.
3https://github.com/ocaml-multicore/kcas/blob/main/doc/gkmz-with-read-only-cmp-ops.md
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type state =
| Open of Unix.file_descr
| Closing of (unit -> unit)

type t =
{ mutable ops: int [@atomic];

mutable state: state [@atomic];
}

let closed = Closing (fun () -> ())
let close t =

match t.state with
| Closing _ -> false
| Open fd as prev ->

let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [%atomic.loc t.state] prev next then (

if t.ops == 0
&& Atomic.Loc.compare_and_set [%atomic.loc t.state] next closed
then

close () ;
true

) else (
false

)

Figure 2. Rcfd.close function from the Eio [27] library

A formalized OCaml fragment for the verification of concurrent algorithms.60
These subtle aspects, illustrated through two realistic examples, justify the need for a61
faithful formal semantics of a fragment of OCaml tailored for the verification of concurrent62
algorithms. Ideally, of course, this fragment would include most of the language. However,63
the direct practical aim of this work—the verification of real-life libraries like Saturn [26]—64
led us to the following design philosophy: only include what is actually needed to express65
and reason about concurrent algorithms in a convenient way.66

In this paper, we show how we have designed a practical framework, Zoo, following this67
guideline. We review the works related to the verification of OCaml programs in Section 2;68
we describe our framework in Section 3; we detail the important features, including the69
treatment of physical equality, in Section 4 before concluding.70

2 Related work71

The idea of applying formal methods to verify OCaml programs is not new. Generally72
speaking, there are mainly two ways:73

Semi-automated verification. The verified program is annotated by the user to guide74
the verification tool: preconditions, postconditions, invariants, etc. Given this input, the75
tool generates proof obligations that are mostly automatically discharged. One may further76
distinguish two types of semi-automated systems: foundational and non-foundational.77

In non-foundational automated verification, the tool and the external solvers it may rely78
on are part of the trusted computing base. It is the most common approach and has been79
widely applied in the literature [5, 7, 3, 19, 18, 4], including to OCaml by Cameleer [16],80
which uses the Gospel specification language [12] and Why3 [4].81
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In foundational automated verification, the proofs are checked by a proof assistant like82
Coq, meaning the automation does not have to be trusted. To our knowledge, it has been83
applied to C [17] and Rust [24].84

Non-automated verification. The verified program is translated, manually or in an85
automated way, into a representation living inside a proof assistant. The user has to write86
specifications and prove them.87

The representation may be primitive, like Gallina for Coq. For pure programs, this88
is rather straightforward, e.g . in hs-to-coq[10]. For imperative programs, this is more89
challenging. One solution is to use a monad, e.g . in coq-of-ocaml [22], but it does not90
support concurrency.91

The representation may be embedded, meaning the semantics of the language is formalized92
in the proof assistant. This is the path taken by some recent works [20, 21, 11] harnessing93
the power of separation logic, in particular the Iris [8] concurrent separation logic. Iris94
is a very important work for the verification of concurrent algorithms. It allows for a rich,95
customizable ghost state that makes it possible to design complex concurrent protocols. In96
our experience, for the lockfree algorithms we considered, there is simply no alternative.97

The tool closest to our needs so far is CFML [20], which targets OCaml. However,98
CFML does not support concurrency and is not based on Iris. The Osiris [23] framework,99
still under development, also targets OCaml and is based on Iris. However, it does not100
support concurrency and it is arguably non-trivial to introduce it since the semantics uses101
interaction trees [14]—the question of how to handle concurrency in this context is a research102
subject. Furthermore, Osiris is not usable yet; its ambition to support a large fragment of103
OCaml makes it a challenge.104

3 Zoo in practice105

Before describing the salient features of our language, Zoo, in Section 4, we give an overview106
of the framework.107

From OCaml to Zoo. First, OCaml source files are translated into Zoo by the108
ocaml2zoo tool. The Zoo syntax is given in Figure 34, omitting mutually recursive toplevel109
functions that are treated specifically. Essentially, Zoo is an untyped, ML-like, imperative,110
concurrent programming language. The supported OCaml fragment includes: shallow111
match, ADTs, records, inline records, atomic record fields, unboxed types, toplevel mutually112
recursive functions.113

For instance, the push function from Section 1 is translated into:114

Definition stack_push : val :=
rec: "push" "t" "v" =>

let: "old" := !"t" in
let: "new_" := "v" :: "old" in
ifnot: CAS "t".[contents] "old" "new_" then (

Yield ;;
"push" "t" "v"

).

Specifications and proofs. Second, the user writes specifications for the translated115
functions and prove them using the Iris proof mode [9].116

For instance, the specification for the stack_push function would be:117

4More precisely, it is the syntax of the surface language, including many Coq notations.
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Coq term t
constructor C
projection proj
record field fld
identifier s, f ∈ String
integer n ∈ Z
boolean b ∈ B
binder x ::= <> | s
unary operator ⊕ ::= ~ | -
binary operator ⊗ ::= + | - | * | ‘quot‘ | ‘rem‘

| <= | < | >= | > | = | ≠ | == | !=
| and | or

expression e ::= t | s | #n | #b
| fun: x1 . . . xn => e | rec: f x1 . . . xn => e
| let: x := e1 in e2 | e1 ;; e2
| let: f x1 . . . xn := e1 in e2 | letrec: f x1 . . . xn := e1 in e2
| let: ‘C x1 . . . xn := e1 in e2 | let: x1, . . . ,xn := e1 in e2
| ⊕e | e1 ⊗ e2
| if: e0 then e1 (else e2)

? | ifnot: e0 then e1
| for: x := e1 to e2 begin e3 end
| §C | ‘C (e1, . . . ,en) | (e1, . . . ,en) | e.<proj>
| [] | e1 :: e2
| Alloc e1 e2 | ref e | !e | e1 <- e2
| ‘C {e1, . . . ,en} | {e1, . . . ,en} | e.{fld} | e1 <-{fld} e2
| Reveal e | GetTag e | GetSize e
| match: e0 with br1| . . . | brn (|_ (as s)? => e)? end
| Fork e | Yield
| e.[fld] | Xchg e1 e2 | CAS e1 e2 e3 | FAA e1 e2
| Proph | Resolve e0 e1 e2

branch br ::= C (x1 . . . xn)
? (as s)? => e

| [] (as s)? => e | x1 :: x2 (as s)? => e
toplevel value v ::= t | #n | #b

| fun: x1 . . . xn => e | rec: f x1 . . . xn => e
| §C | ‘C (v1, . . . ,vn) | (v1, . . . ,vn)
| [] | v1 :: v2

Figure 3. Zoo syntax (omitting mutually recursive toplevel functions)
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Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs, stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof.
...

Qed.

Here, we use a logically atomic specification [6], which has been proven [15] to be equivalent118
to linearizability [2] in sequentially consistent memory models.119

4 Zoo features120

In this section, we review the main features of Zoo, starting with the most generic ones and121
then addressing those related to concurrency.122

4.1 Algebraic data types123

Zoo is an untyped language but, to write interesting programs, it is convenient to work124
with abstractions like algebraic data types. To simulate tuples, variants and records, we125
designed a machinery to define projections, constructors and record fields.126

For example, one may define a list-like type with:127

Notation "'Nil'" := (in_type "t" 0) (in custom zoo_tag).
Notation "'Cons'" := (in_type "t" 1) (in custom zoo_tag).

Definition map : val :=
rec: "map" "fn" "t" =>

match: "t" with
| Nil =>

§Nil
| Cons "x" "t" =>

let: "y" := "fn" "x" in
‘Cons( "y", "map" "fn" "t" )

end.

Similarly, one may define a record-like type with two mutable fields f1 and f2:128

Notation "'f1'" := (in_type "t" 0) (in custom zoo_field).
Notation "'f2'" := (in_type "t" 1) (in custom zoo_field).

Definition swap : val :=
fun: "t" =>

let: "f1" := "t".{f1} in
"t" <-{f1} "t".{f2} ;;
"t" <-{f2} "f1".
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4.2 Mutually recursive functions129

Zoo supports non-recursive (fun: x1 . . . xn => e) and recursive (rec: f x1 . . . xn => e)130
functions but only toplevel mutually recursive functions. Indeed, it is non-trivial to properly131
handle mutual recursion: when applying a mutually recursive function, a naive approach132
would replace the recursive functions by their respective bodies, but this typically makes133
the resulting expression unreadable. To prevent it, the mutually recursive functions have to134
know one another so as to replace by the names instead of the bodies. We simulate this135
using some boilerplate that can be generated by ocaml2zoo. For instance, one may define136
two mutually recursive functions f and g as follows:137

Definition f_g := (
recs: "f" "x" => "g" "x"
and: "g" "x" => "f" "x"

)%zoo_recs.
Definition f := ValRecs 0 f_g.
Definition g := ValRecs 1 f_g.
Instance : AsValRecs' f 0 f_g [f;g]. Proof. done. Qed.
Instance : AsValRecs' g 1 f_g [f;g]. Proof. done. Qed.

4.3 Standard library138

To save users from reinventing the wheel, we provide a standard library—more or less139
a subset of the OCaml standard library. Currently, it mainly includes standard data140
structures like: array (Array), resizable array (Dynarray), list (List), stack (Stack), queue141
(Queue), double-ended queue, mutex (Mutex), condition variable (Condition).142

4.4 Physical equality143

In Zoo, a value is either a bool, an integer, a memory location, a function or an immutable144
block. To deal with physical equality in the semantics, we have to specify what guarantees145
we get when 1) physical comparison returns true and 2) when it returns false. We assume146
that the program is semantically well typed, if not syntactically well typed, in the sense that147
compared values are loosely compatible: a boolean may be compared with another boolean148
or a location, an integer may be compared with another integer or a location, an immutable149
block may be compared with another immutable block or a location. This means we never150
physically compare, e.g ., a boolean and an integer, an integer and an immutable block. If151
we wanted to allow it, we would have to extend the semantics of physical comparison to152
account for conflicts in the memory representation of values.153

For booleans, integers and memory locations, the semantics of physical equality is plain154
equality. For abstract values (functions and immutable blocks), the semantics is relaxed:155
true means the values are structurally equal, hence they are equal in Coq; false means156
basically nothing, we do not know because, e.g ., two immutable blocks may have distinct157
identities but same content.158

To address the second example of Section 1, we add a twist. By using the Reveal primitive159
on an immutable block, we get the same block annotated with an abstract identifier. The160
meaning is this identifier is: if physical comparison on two identified blocks returns false,161
the two identifiers are necessarily distinct. The underling assumption that we make here,162
which is hopefully correct in OCaml, is that the compiler may only introduce sharing.163
Thanks to this trick, the example can be verified.164

JFLA 2025 – 36es Journées Francophones des Langages Applicatifs 7

https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://github.com/clef-men/zoo
https://coq.inria.fr/


Zoo: A framework for the verification
of concurrent OCaml 5 programs
using separation logic

Allain

4.5 Structural equality165

Structural equality is also supported. More precisely, it is not part of the semantics of the166
language but axiomatized on top of it5. The reason is that it is in fact difficult to specify167
for arbitrary values. Indeed, we have to handle not only abstract tree-like values (booleans,168
integers, immutable blocks) but also pointers to memory blocks for records. In general, we169
basically have to compare graphs—which implies structural comparison may diverge.170

Accordingly, the specification of v1 = v2 requires the (partial) ownership of a memory171
footprint corresponding to the union of the two compared graphs, giving the right to traverse172
them safely. If it terminates, the comparison decides whether the two graphs are isomorphic.173
In Iris, this gives:174

Axiom structeq_spec : ∀ `{zoo_G : !ZooG Σ} {v1 v2} footprint,
val_traversable footprint v1 →
val_traversable footprint v2 →
{{{ structeq_footprint footprint }}}

v1 = v2
{{{ b, RET #b;

structeq_footprint footprint ∗
⌜ if b then val_structeq footprint v1 v2

else val_structne footprint v1 v2 ⌝
}}}.

Obviously, this general specification is not very convenient to work with. Fortunately, for175
abstract tree-like values, we get a much simpler variant:176

Lemma structeq_spec_abstract `{zoo_G : !ZooG Σ} v1 v2 :
val_is_abstract v1 →
val_is_abstract v2 →
{{{ True }}}

v1 = v2
{{{ RET #(bool_decide (v1 = v2)); True }}}

Proof.
...

Qed.

4.6 Concurrent primitives177

Zoo supports concurrent primitives both on atomic references (from Atomic) and atomic178
record fields (from Atomic.Loc6) according to the table below. The OCaml expressions179
listed in the left-hand column translate into the Zoo expressions in the right-hand column.180
Notice that an atomic location [%atomic.loc e.f] (of type _ Atomic.Loc.t) translates181
directly into e.[f].182

183
OCaml Zoo
Atomic.get e !e
Atomic.set e1 e2 e1 <- e2
Atomic.exchange e1 e2 Xchg e1.[contents] e2
Atomic.compare_and_set e1 e2 e3 CAS e1.[contents] e2 e3
Atomic.fetch_and_add e1 e2 FAA e1.[contents] e2
Atomic.Loc.exchange [%atomic.loc e1.f] e2 Xchg e1.[f] e2
Atomic.Loc.compare_and_set [%atomic.loc e1.f] e2 e3 CAS e1.[f] e2 e3
Atomic.Loc.fetch_and_add [%atomic.loc e1.f] e2 FAA e1.[f] e2

184

5We could also have implemented it in Zoo, but that would require more low-level primitives.
6The Atomic.Loc module is part of the PR that implements atomic record fields.
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One important aspect of this translation is that atomic accesses (Atomic.get and185
Atomic.set) correspond to plain loads and stores. This is because we are working in186
a sequentially consistent memory model: there is no difference between atomic and non-187
atomic memory locations.188

4.7 Prophecy variables189

Lockfree algorithms exhibit complex behaviors. To tackle them, Iris provides powerful190
mechanisms such as prophecy variables [13]. Essentially, prophecy variables can be used to191
predict the future of the program execution and reason about it. They are key to handle192
future-dependent linearization points: linearization points that may or may not occur at a193
given location in the code depending on a future observation.194

Zoo supports prophecy variables through the Proph and Resolve expressions—as in195
HeapLang, the canonical Iris language. In OCaml, these expressions correspond to196
Zoo.proph and Zoo.resolve, that are recognized by ocaml2zoo.197

5 Conclusion and future work198

The development of Zoo is still ongoing. It supports a limited fragment of OCaml that199
is sufficient for most of our needs. Its main weakness so far is its memory model, which is200
sequentially consistent as opposed to the relaxed OCaml 5 memory model.201

Zoo is not yet available on opam but can be installed and used in other Coq projects.202
We provide a minimal example demonstrating its use. We are also working on integrating203
ocaml2zoo with dune.204
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