
Verification
of fine-grained concurrent OCaml 5 algorithms

using separation logic

Clément Allain

December 17, 2025

1 / 28

Energy

2 / 28

Energy. . . for machines

3 / 28

Programming languages. . . to control machines

4 / 28

Software failure: Cloudflare outage (18/11/2025)

3h outage
(20% of the web)

Bot management
configuration file

5 / 28

Software failure: Ariane 5 (04/06/1996)

$500M

Integer
overflow

6 / 28

Software failure: Therac-25 (06/1985 - 01/1987)

6 human lives

Race condition
(concurrency bug)

Mode/Energy Offset (MEOS)

Handler

Date, Time, ID Changes

Reset

Set Up Test

Datent

Pause Treatment

Terminate Treatment

Hand

collimator)
(Set upper

Set Up Done

Keyboard

Patient Treatment

Data Entry
Complete

Offset parameters Mode/energy
5

0

1

2

3

4

6

7

Tphase

Treat

control
variable

Calibration
tables

7 / 28

Cost of Poor Software Quality (CPSQ) in the US in 2020

Page 4 of 46

 CISQ Consortium for Information & Software Quality I The Cost of Poor Software Quality in the US: A 2020 Report

1. EXECUTIVE SUMMARY

This report was developed during especially turbulent times with the world battling a global pandemic. Yet,
software continues to grow, proliferate, and enhance our digitally enabled lives. As organizations undertake
major digital transformations, software-based innovation and development rapidly expands. The result is a
balancing act trying to deliver value at high speed without sacrificing quality. Generally, however, we are not
very good at balancing. Software quality lags behind other objectives in most organizations. That lack of primary
attention to quality comes at a steep cost, which is revealed in this report. While organizations can monetize the
business value of speed, they rarely measure the offsetting cost of poor quality.

For the year 2020, we determined the total Cost of Poor Software Quality (CPSQ) in the US is $2.08 trillion (T).
We also note that the 2020 US figure for the software technical debt residing in severe defects that need to be
corrected would be $1.31 T (minus interest) but did not include technical debt in the total CPSQ since it
represents a future cost which is increasing (14% rise since 2018). The graphical results are shown below.

Figure 1: CPSQ in 2020 in the US

Specifically, we determined that:

• The largest contributor to CPSQ is operational software failures. For 2020 we estimated that it is ~$1.56
T, a 22% growth over 2 years – but that could be underestimated given the meteoric rise in
cybersecurity failures, and that many failures go unreported. The underlying cause is primarily
unmitigated flaws in the software.

• The next largest contributor to CPSQ in unsuccessful development projects totaling $260 billion (B),
which rose by 46% since 2018. The project failure rate has been steady at ~19% for over a decade. The
underlying causes are varied, but one consistent theme has been the lack of attention to quality.

• Legacy system problems contributed $520 B to CPSQ (down from $635 B in 2018), mostly still due to
non-value added “waste.”

The detailed calculations leading to these totals are found in section 3 of this report.

(Consortium for Information & Software Quality) 8 / 28

Formal methods
Improve the confidence in software

behaviors(Program)

Property
(correctness, security, time usage, space usage)

9 / 28

Formal methods

Expressivity

Automation

Type inference

Static analysis

Model checking

Deductive verification

Proof assistants

(Xavier Leroy) 10 / 28

Formal methods

Expressivity

Automation

Type inference

Static analysis

Model checking

Deductive verification

Proof assistants

(Xavier Leroy) 10 / 28

Zoo: A framework for the verification of concurrent OCaml 5 programs

Parabs: A library of parallel abstractions

Chase-Lev work-stealing deque

Conclusion

▶ Typically French programming language (it’s quite good).

▶ Functional: first-class functions, algebraic data types.
▶ Imperative: references, mutable records.
▶ Strongly typed: well-typedness =⇒ safety.
▶ Garbage-collected: automatic memory management.

From OCaml 5 (2022):
▶ Parallel: domains, atomic references, blocking mechanisms.
▶ Concurrent: algebraic effects.

11 / 28

Zoo

ocaml2zoo

−−−−−→ Zoo

12 / 28

Iris separation logic (2015)

▶ Higher-order ghost state
▶ User-defined ghost state
▶ Mechanized in Rocq
▶ Basic automation through Diaframe

▶ Invariants
▶ Atomic updates
▶ Prophecy variables

13 / 28

Zoo in practice

project
dune-project
lib

domainslib
dune
scheduler.ml
scheduler.mli

saturn
dune
stack.ml
stack.mli

−−→

theories
domainslib

scheduler__code.v
scheduler__types.v

saturn
stack__code.v
stack__types.v

$ ocaml2zoo project theories

14 / 28

Zoo in practice
let rec push t v =

let old = Atomic.get t in
let new_ = v :: old in
if not (Atomic.compare_and_set t old new_) then (

Domain.cpu_relax () ;
push t v

)

Definition stack_push : val :=
rec: "stack_push" "t" "v" =>

let: "old" := !"t" in
let: "new" := ‘Cons("v", "old") in
if: ~ CAS "t" "old" "new" then (

domain_cpu_relax () ;;
"stack_push" "t" "v"

).
15 / 28

Zoo in practice

Lemma stack_push_spec t ι v :
<<<

stack_inv t ι
| ∀∀ vs, stack_model t vs
>>>

stack_push t v @ ↑ι
<<<

stack_model t (v :: vs)
| RET (); True
>>>.

Proof. ... Qed.

stack_push is
linearizable

16 / 28

Zoo features

▶ Algebraic data types
▶ Records
▶ Mutually recursive functions
▶ Physical equality
▶ Structural equality
▶ Prophecy variables
▶ Diaframe (basic automation)
▶ Standard library

▶ Atomic references
▶ Atomic record fields
▶ Atomic arrays
▶ Generative constructors

17 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

Std

Persistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

Std

Persistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent

Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent

Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn

Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn

Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Contributions

Rocq

Zoo

StdPersistent Rcfd

Saturn Kcas

Parabs

Standard data structures

▶ Array
▶ Dynarray
▶ Inf_array
▶ List
▶ Stack
▶ Queue

▶ Domain
▶ Mutex
▶ Semaphore
▶ Condition
▶ Ivar
▶ Mvar

Basile Clément Gabriel Scherer

Persistent data structures
▶ Persistent array
▶ Persistent store
▶ Persistent union-find

Thomas Leonard

Parallelism-safe file descriptor
▶ Generative constructors
▶ Intricate concurrent protocol
▶ Two ownership regimes

Vesa Karvonen Carine Morel

Standard lock-free data structures
▶ Stacks
▶ List-based queues
▶ Array-based queues
▶ Stack-based queues
▶ Work-stealing deques

Vesa Karvonen

Lock-free multi-word
compare-and-set

(at the core of the Kcas library)

Parallel abstractions
▶ Work-stealing scheduler
▶ Futures
▶ Parallel iterators
▶ Task graph (DAG-calculus)

18 / 28

Zoo: A framework for the verification of concurrent OCaml 5 programs

Parabs: A library of parallel abstractions

Chase-Lev work-stealing deque

Conclusion

Overview

Parabs

Saturn

Std

dependency

implementation

Ws_deques_public

Ws_deque

Ws_deques_private

Queue

Ws_dequesRandom_round

Ws_hub

Ws_hub_fifoWs_hub_std

Waiters

Mpsc_waiter Mpmc_queue

Algo

FutureIvar Vertex

Mpmc_stackPoolDomain

19 / 28

Overview

Parabs

Saturn

Std

dependency

implementation

Ws_deques_public

Ws_deque

Ws_deques_private

Queue

Ws_dequesRandom_round

Ws_hub

Ws_hub_fifoWs_hub_std

Waiters

Mpsc_waiter Mpmc_queue

Algo

FutureIvar Vertex

Mpmc_stackPoolDomain

19 / 28

Overview

Parabs

Saturn

Std

dependency

implementation

Ws_deques_public

Ws_deque

Ws_deques_private

Queue

Ws_dequesRandom_round

Ws_hub

Ws_hub_fifoWs_hub_std

Waiters

Mpsc_waiter Mpmc_queue

Algo

FutureIvar Vertex

Mpmc_stackPoolDomain

19 / 28

Overview

Parabs

Saturn

Std

dependency

implementation

Ws_deques_public

Ws_deque

Ws_deques_private

Queue

Ws_dequesRandom_round

Ws_hub

Ws_hub_fifoWs_hub_std

Waiters

Mpsc_waiter Mpmc_queue

Algo

FutureIvar Vertex

Mpmc_stackPoolDomain

19 / 28

Benchmarks

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

sequential

parabs

domainslib

moonpool-fifo

moonpool-ws

se
co
nd
s

domains

(a) fibonacci

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

sequential

parabs

domainslib

moonpool-fifo

moonpool-ws

se
co
nd
s

domains

(b) for_irregular

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7 8 9 10 11 12

sequential

parabs

domainslib

moonpool-fifo

moonpool-ws

se
co
nd
s

domains

(c) iota

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10 11 12

sequential

parabs

domainslib

moonpool-fifo

moonpool-ws

se
co
nd
s

domains

(d) lu

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12

sequential

parabs

domainslib

moonpool-fifo

moonpool-ws

se
co
nd
s

domains

(e) matmul

Parabs has equal or better performance than Domainslib.
20 / 28

Zoo: A framework for the verification of concurrent OCaml 5 programs

Parabs: A library of parallel abstractions

Chase-Lev work-stealing deque

Conclusion

Work-stealing

Domain ①

work-stealing deque

pop

push
tasktasktask

Domain ②
pop

push
tasktasktasktasktask

Domain ③
pop

pushsteal

21 / 28

Chase-Lev work-stealing deque

Dynamic Circular Work-Stealing Deque

David Chase
Sun Microsystems Laboratories

Mailstop UBUR02-311
1 Network Drive

Burlington, MA 01803, USA

dr2chase@sun.com

Yossi Lev
Brown University & Sun Microsystems Laboratories

Mailstop UBUR02-311
1 Network Drive

Burlington, MA 01803, USA

yosef.lev@sun.com

ABSTRACT
The non-blocking work-stealing algorithm of Arora, Blu-
mofe, and Plaxton (henceforth ABP work-stealing) is on its
way to becoming the multiprocessor load balancing technol-
ogy of choice in both industry and academia. This highly ef-
ficient scheme is based on a collection of array-based double-
ended queues (deques) with low cost synchronization among
local and stealing processes. Unfortunately, the algorithm’s
synchronization protocol is strongly based on the use of fixed
size arrays, which are prone to overflows, especially in the
multiprogrammed environments for which they are designed.
We present a work-stealing deque that does not have the
overflow problem.

The only ABP-style work-stealing algorithm that elimi-
nates the overflow problem is the list-based one presented
by Hendler, Lev and Shavit. Their algorithm indeed deals
with the overflow problem, but it is complicated, and intro-
duces a trade-off between the space and time complexity,
due to the extra work required to maintain the list.

Our new algorithm presents a simple lock-free work-stealing
deque, which stores the elements in a cyclic array that can
grow when it overflows. The algorithm has no limit other
than integer overflow (and the system’s memory size) on the
number of elements that may be on the deque, and the total
memory required is linear in the number of elements in the
deque.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—load balancing, lock-free; E.1 [Data]: Data Struc-
tures

General Terms
Algorithms

Keywords
work stealing, load balancing, lock-free, deque

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05, July 18–20, 2005, Las Vegas, Nevada, USA.
(c) Sun Microsystems, Inc.
ACM 1-58113-986-1/05/0007

1. INTRODUCTION
The ABP work-stealing algorithm of Arora, Blumofe, and

Plaxton [2] has been gaining popularity as the multiproces-
sor load-balancing technology of choice in both industry and
academia [2, 1, 4, 9]. The scheme implements a provably ef-
ficient work-stealing paradigm due to Blumofe and Leiserson
[3] that allows each process to maintain a local work deque,1

and steal an item from others if its deque becomes empty.
The deque’s owner process pushes and pops local work to
and from the deque’s bottom end. To minimize synchro-
nization overhead for the deque’s owner, stolen elements are
taken from the top end of the deque. No elements are added
to the top end of the deque. An ABP deque thus presents
three methods in its interface:

• pushBottom(Object o):
Pushes o onto the bottom of the deque.

• Object popBottom():
Pops an object from the bottom of the deque if the
deque is not empty, otherwise returns Empty.

• Object steal():
If the deque is empty, returns Empty. Otherwise, re-
turns the element successfully stolen from the top of
the deque, or returns Abort if this process loses a race
with another process to steal the topmost element2.

Note that pushBottom and popBottom operations are in-
voked only by the deque’s owner.

Unfortunately, the use of fixed size arrays introduces an
inefficient memory-size/robustness tradeoff: for n processes
and total allocated memory size m, one can tolerate at most
m

n
items in a deque. Using cyclic arrays, or the reset-on-

empty heuristic presented in the original ABP algorithm,3

reduces the chance of overflow but does not eliminate it.
The list-based work-stealing deque algorithm presented by

1Actually, the work-stealing algorithm uses a work-stealing
deque, which is like a deque [8] except that only one process
can access one end of the queue (the “bottom”), and only
Pop operations can be invoked on the other end (the “top”).
For brevity, we refer to the data structure as a deque in the
remainder of the paper.
2In our implementation, as we describe, Abort is also re-
turned if a steal operation lost a race with an array memory
reclamation caused by a concurrent popBottom operation.
3The reset-on-empty heuristic resets top and bottom to
point to the beginning of the array whenever the deque be-
comes empty. It was used by the original ABP algorithm to
make overflow scenarios less frequent.

22 / 28

Physical state

data

front

steal

back

pop push

history model private

data: infinite array storing all values

front: monotonic thieves’ index
back: owner’s index

history: monotonic list of values
model: logical content of the deque
private: owner-only region

23 / 28

Physical state

data

front

steal

back

pop push

history model private

data: infinite array storing all values
front: monotonic thieves’ index

back: owner’s index
history: monotonic list of values
model: logical content of the deque
private: owner-only region

23 / 28

Physical state

data

front

steal

back

pop push

history model private

data: infinite array storing all values
front: monotonic thieves’ index
back: owner’s index

history: monotonic list of values
model: logical content of the deque
private: owner-only region

23 / 28

Physical state

data

front

steal

back

pop push

history

model private

data: infinite array storing all values
front: monotonic thieves’ index
back: owner’s index

history: monotonic list of values

model: logical content of the deque
private: owner-only region

23 / 28

Physical state

data

front

steal

back

pop push

history model

private

data: infinite array storing all values
front: monotonic thieves’ index
back: owner’s index

history: monotonic list of values
model: logical content of the deque

private: owner-only region

23 / 28

Physical state

data

front

steal

back

pop push

history model private

data: infinite array storing all values
front: monotonic thieves’ index
back: owner’s index

history: monotonic list of values
model: logical content of the deque
private: owner-only region

23 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop

pop

linearization

stabilization

24 / 28

Logical state

① Empty

front = back

② Non-empty

front back

③ Emptyish

front = back

④ Super-empty

back front

push

steal

push, pop, steal

pop

pop, steal

pop pop

linearization

stabilization

24 / 28

Prophecy variables / Prophets

▶ Primitive prophets
Predict the future of the execution.

▶ Typed prophets
Prediction belongs to a user-supplied semantic type.

▶ Wise prophets
Remember past predictions.
Eliminate inconsistent branches.

▶ Multiplexed prophets
Separate logically independent predictions on a single prophet.

25 / 28

Zoo: A framework for the verification of concurrent OCaml 5 programs

Parabs: A library of parallel abstractions

Chase-Lev work-stealing deque

Conclusion

Takeaway

Iris-based verification frameworks can scale to real-life
programming languages and (relatively) large pieces of
software.

▶ Practical verification framework.
▶ Formalization of a realistic OCaml subset.
▶ Verification of realistic concurrent data structures.
▶ Extensions of Iris proof techniques.
▶ OCaml language improvements.

Not mentioned in this presentation:
▶ Memory safety.
▶ “Tail Modulo Cons” program transformation.
▶ Ongoing work on (parts of) the OCaml GC.

26 / 28

Takeaway

Iris-based verification frameworks can scale to real-life
programming languages and (relatively) large pieces of
software.

▶ Practical verification framework.
▶ Formalization of a realistic OCaml subset.
▶ Verification of realistic concurrent data structures.
▶ Extensions of Iris proof techniques.
▶ OCaml language improvements.

Not mentioned in this presentation:
▶ Memory safety.
▶ “Tail Modulo Cons” program transformation.
▶ Ongoing work on (parts of) the OCaml GC.

26 / 28

Future work

▶ Language features
▶ Exceptions
▶ Algebraic effects
▶ Modules & functors

▶ Coupling with semi-automated verification

▶ Relaxed memory

27 / 28

Relaxed memory

Methodology by Glen Mével et al.:

1. Start with the invariant under sequential consistency;

2. Identify how information flows between domains,
i.e. where the synchronization points are;

3. Refine the invariant with memory views accordingly.

28 / 28

Thank you for your attention!

	Zoo: A framework for the verification of concurrent OCaml 5 programs
	Parabs: A library of parallel abstractions
	Chase-Lev work-stealing deque
	Conclusion

