Verification
of fine-grained concurrent OCaml 5 algorithms
using separation logic

Clément Allain

December 17, 2025

- P @ ILDJni_vecr:s?it,é
Creeia— aris Cite

1/28

Energy

3 3 World
Global primary energy consumption by source
Primary energy” is based on the substitution method? and measured in terawatt-hours®.
200,000 TWh Other renewables
[Modern biofuels
180,000 TWh - Solar
Wind
160,000 TWh Hydropower
L Nuclear
140,000 TWh
Natural gas
120,000 TWh
100,000 TWh
80,000 TWh ol
60,000 TWh
40,000 TWh
Coal
20,000 TWh
" Traditional biomass
1800 1850 1900 1950 2000 2024
Data source: Energy Institute - Statistical Review of World Energy (2025); Smil (2017) OurWorldinData.org/energy | CC BY

Note: In the absence of more recent data, traditional biomass is assumed constant since 2015. 2/28

Energy... for machines

3/28

Programming languages. .. to control machines

Java
£) Swift E | Gl

4/28

Software failure: Cloudflare outage (18/11/2025)

Internal server error wees

Visit cloudflare.com for more information.

2025-11-18 11:56:44 UTC

3h outage

) * (20% of the web)

You Kuala Lumpur

Cloudflare

Error
71 /// Fetch edge features based on “input’ struct into [Features'] buffer.
72 pub fn fetch_features(
73 &mut self,
74 input: &dyn BotsInput,
Bot ma nagement 75 features: &mut Features,
76) -> Result<(), (ErrorFlags, i32)> {
. . . 77 // update features checksum (lower 32 bits) and copy edge feature names
Conflgu ratlon f' Ie 78 features.checksum &= OxFFFF_FFFF_0000_0000;
79 features.checksum |= ub4::from(self.config.checksum);
80 let (feature_values, _) = features
81 .append_with_names (&self.config.feature_names)
< 82 .unwrap() ;

5/28

Software failure: Ariane 5 (04/06/1996)

$500M

L_M_BV_32 := TDB.T_ENTIER 325 ((1.0/C_M_LSB_BV) *

G_M_INFO_DERIVE (T_ALG.E_BV});
if L_M_BV_32 > 32767 then

P_M_DERIVE(T_ALG.E_BV) := 1687FFF4;
elsif L M BV 32 < -32768 then
|nteger P_M_DERIVZ (7_ALG.E_BV) :=.16#80004:
else
F_M_DERIVE(T ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_165(L_M
overflow end 1f;
l;'.‘ P_M_DERIVE (T_ALG.E_BH) := UC_16S EN_16NS (TDB.T_ENTIER_16S

((1.0/C_M_LSB_BH) *

G_M_INFO DERIVE(T ALG.E_BH)))
_end LIRE_DERIVE: e a——

6/28

Software failure: Therac-25 (06/1985 - 01/1987)

Race condition
(concurrency bug)

Hand
(Set upper
e [row]
ry |
c
= - ‘/_»/:JDalenl
/ Set Up Done

6 human lives

Set Up Test

" Pause Treatment

Mode/Energy Offset (MEOS)

¢ Calibration . -~
tables

Terminate Treatment

0
1
2
3
EErrr—
5
6
7

Date, Time, ID Changes

Treat

Tphase
control
variable

7/28

Cost of Poor Software Quality (CPSQ) in the US in 2020

(Consortium for Information & Software Quality) 8/28

Formal methods
Improve the confidence in software

Property
(correctness, security, time usage, space usage)

9/28

Formal methods

Automation

L]
\
\
\

‘\\ Type inference

. Static analysis

.

\
\

\

\
\

°
N

N
N

~
~

Model checking

~

Deductive verification

~

~o Proof assistants

- _ _

Expressivity

(Xavier Leroy)

10/28

Formal methods

Automation

‘\\ Type inference

' wWROCQ
\\ Static analysis

.

\
\
\
\

+. Model checking

°
N
N
N
~

~_ Deductive verification
A §

~

~o Proof assistants
T e

Expressivity

(Xavier Leroy) 10/28

Zoo: A framework for the verification of concurrent OCaml 5 programs

OCaml
» Typically French programming language (it's quite good).

» Functional: first-class functions, algebraic data types.
» Imperative: references, mutable records.

» Strongly typed: well-typedness = safety.

» Garbage-collected: automatic memory management.

From OCaml 5 (2022):
» Parallel: domains, atomic references, blocking mechanisms.
» Concurrent: algebraic effects.

11/28

Iris
/00
WwROCQ

ocaml2zoo

Iris separation logic (2015)

[ris

» Higher-order ghost state
» User-defined ghost state
» Mechanized in Rocq

WROCQ

» |nvariants
» Atomic updates
» Prophecy variables

» Basic automation through Diaframe

13/28

/oo in practice

project
dune-project
1ib theories
domainslib domainslib
dune scheduler__code.v
scheduler.ml — scheduler__types.v
scheduler.mli saturn
saturn tstack__code.v
dune stack__types.v
stack.ml
stack.mli

$ ocaml2zoo project theories

14 /28

/oo in practice

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not (Atomic.compare_and_set t old new_) then (
Domain.cpu_relax () ;
push t v

) O‘Caml

Definition stack_push : val := aROCQ

rec: "stack_push" "t" "v" =>
let: "old" := !"t" in
let: "new" := ‘Cons("v", "old") in
if: 7 CAS "t" "old" "new" then (
domain_cpu_relax () ;;
|lstack_pushll Iltll IIVII

).

15/28

/oo in practice

Lemma stack_push_spec t ¢ v :

<<
stack_inv t ¢

| VW vs, stack_model t vs
>>>

stack_push t v @ Ty

<<<

stack_model t (v :: vs)
| RET (); True
>>>

Proof. ... Qed.

stack_push is
linearizable

16 /28

Zoo features

Algebraic data types
Records

Mutually recursive functions

>

>

>

» Physical equality
» Structural equality

» Prophecy variables

» Diaframe (basic automation)

» Standard library

» Atomic references
» Atomic record fields
» Atomic arrays

» Generative constructors

17/28

Contributions

18/28

Contributions

/00

Rocq

18/28

Contributions

Std

/00

Rocq

18/28

-

Standard data structures

» Array

» Dynarray
» Inf_array
» List

» Stack

» Queue

» Domain

» Mutex

» Semaphore
» Condition
» Ivar

» Mvar

18/28

Contributions

Persistent

Std

/00

Rocq

18/28

Basile Clément Gabriel Scherer

Persistent data structures
» Persistent array
» Persistent store

» Persistent union-find

18/28

Contributions

Persistent

Std

Rcfd

/00

Rocq

18/28

Thomas Leonard

Parallelism-safe file descriptor
» Generative constructors
» Intricate concurrent protocol

» Two ownership regimes

18/28

Contributions

Saturn

Persistent

Std

Rcfd

/00

Rocq

18/28

Vesa Karvonen Carine Morel

Standard lock-free data structures
» Stacks
» List-based queues
» Array-based queues
» Stack-based queues
» Work-stealing deques

18/28

Contributions

Saturn

Persistent

Kcas

Std

Rcfd

/00

Rocq

18/28

Vesa Karvonen

Lock-free multi-word
compare-and-set
(at the core of the Kcas library)

18/28

Contributions

Parabs

Saturn

Persistent

Std

Kcas

Rcfd

/00

Rocq

18/28

s N

Parallel abstractions

» Work-stealing scheduler

» Futures

» Parallel iterators

» Task graph (DAG-calculus)

18/28

Contributions

Parabs

Saturn

Persistent

Std

Kcas

Rcfd

/00

Rocq

18/28

Parabs: A library of parallel abstractions

Overview

Std
—— dependency

---- implementation

Random_round —

Ivar

|

Mpsc_waiter

19/28

Algo

Overview
- Ivar —— Future Vertex
Std Domain —— | Pool Mpmc_stack
—— dependency ’
Ws_hub

---- implementation
Ws_hub_std Ws_hub_fifo
v

4 -

Random_round 4»_ Waiters
A AN ’ h

e N
Mpsc_waiter Mpmc_queue

Queue
19/28

Overview

Algo

|

- Ivar —— Future Vertex
’ 4
Domain —— | Pool Mpmc_stack

Std
—— dependency

---- implementation

Random_round ——— Ws_deques
hd AN

Mpsc_waiter
Ws_deques_public Ws_deques_private

Ws_deque Queue

19/28

Overview
Algo.

Domain ———

Std
—— dependency
---- implementation Ws_hub

Ws_hub_std Ws_hub_fifo
> = v
e
_ . B
Random_round ——— Ws_deques waiterg
Al w -
. ~_

Mpsc_waiter Mpmc_queue

Ws_deques_public Ws_deques_private

Ws_deque Queue

19/28

Benchmarks

(a) fibonacci (b) for_irregular (c) iota

(d) 1u (e) matmul

Parabs has equal or better performance than Domainslib.

20/28

Chase-Lev work-stealing deque

Work-stealing

steal
task task task task task
task | task | task

work-stealing deque

push

pop

push

pop

push
-—
R

pop

Domain ®

Domain @

Domain @

21/28

Chase-Lev work-stealing deque

Dynamic Circular Work-Stealing Deque

David Chase
Sun Microsystems Laboratories
Mailstop UBUR02-311
1 Network Drive
Burlington, MA 01803, USA

dr2chase@sun.com

ABSTRACT

The non-blocking work-stealing algorithm of Arora, Blu-
mofe, and Plaxton (henceforth ABP work-stealing) is on its
way to b the multip load bal technol-
ogy of choice in both industry and academia. This highly ef-
ficient scheme is based on a collection of array-based double-
ended queues (deques) with low cost synchronization among
local and stealing processes. Unfortunately, the algorithm’s
synchronization protocol is strongly based on the use of fixed
size arrays, which are prone to overflows, especially in the
multiprogrammed environments for which they are designed.
We present a work-stealing deque that does not have the
overflow problem.

The only ABP-style work-stealing algorithm that elimi-
nates the overflow problem is the list-based one presented
by Hendler, Lev and Shavit. Their algorithm indeed deals
with the overflow problem, but it is complicated, and intro-
duces a trade-off between the space and time complexity,
due to the extra work required to maintain the list.

Our new algorithm presents a simple lock-free work-stealing

deque, which stores the elements in a cyclic array that can
grow when it overflows. The algorithm has no limit other
than integer overflow (and the system’s memory size) on the

Yossi Lev
Brown University & Sun Microsystems Laboratories
Mailstop UBUR02-311
1 Network Drive
Burlington, MA 01803, USA

yosef.lev@sun.com

1. INTRODUCTION

The ABP work-stealing algorithm of Arora, Blumofe, and
Plaxton [2] has been gaining popularity as the multiproces-
sor load-balancing technology of choice in both industry and
academia [2, 1, 4, 9]. The scheme implements a provably ef-
ficient work-stealing paradigm due to Blumofe and Leiserson
[3] that allows each process to maintain a local work deque,'
and steal an item from others if its deque becomes empty.
The deque’s owner process pushes and pops local work to
and from the deque’s bottom end. To minimize synchro-
nization overhead for the deque’s owner, stolen elements are
taken from the top end of the deque. No elements are added
to the top end of the deque. An ABP deque thus presents
three methods in its interface:

e pushBottom(Object o):
Pushes o0 onto the bottom of the deque.

® Object popBottom():
Pops an object from the bottom of the deque if the
deque is not empty, otherwise returns Empty.

e Object steal():
If the deque is empty, returns Empty. Otherwise, re-

22 /28

Physical state

data {

data: infinite array storing all values

23/28

Physical state

front

data
steal

data: infinite array storing all values
front: monotonic thieves' index

23/28

Physical state

front back

data < >
steal pop push

data: infinite array storing all values
front: monotonic thieves' index
back: owner’s index

23/28

Physical state

front back

data < >

steal pop push

|
history

data: infinite array storing all values
front: monotonic thieves' index
back: owner's index

history: monotonic list of values

23/28

Physical state

front back
data { < >
steal pop push
history model
data: infinite array storing all values
front: monotonic thieves' index
back: owner’s index
history: monotonic list of values
model: logical content of the deque

23/28

Physical state

front back
data < >
steal pop push
history model private
data: infinite array storing all values
front: monotonic thieves' index
back: owner's index
history: monotonic list of values
model: logical content of the deque
private: owner-only region

23/28

Logical state

@ Empty @ Non-empty

front = back front back

24 /28

Logical state

@ Empty

front = back

@ Super-empty

back front

@ Non-empty

front back

® Emptyish

front = back

24 /28

Logical state
push, pop, steal

@ Empty @ Non-empty
CEE [[
front = back front back
steal
@ Super-empty ® Emptyish
back front front = back

—> linearization

-+-> stabilization

24 /28

Logical state
push, pop, steal

@ Empty @ Non-empty
CEE [[
front = back front back
steal pop
@ Super-empty ® Emptyish
back front front = back

—> linearization

-+-> stabilization

24 /28

Logical state
push, pop, steal

@ Empty @ Non-empty
CEE [[
front = back front back
steal pop
@ Super-empty ® Emptyish
back front front = back
- .

pop, steal

—> linearization

-+-> stabilization

24 /28

Logical state
push, pop, steal

@ Empty @ Non-empty
front = back front back
A \/
pop{ steal pop
@ Super-empty ® Emptyish
back front front = back
- .

pop, steal

—> linearization

-+-> stabilization

24 /28

Logical state
push, pop, steal

@ Empty @ Non-empty
front = back front back
pop{ Epop steal pop
- q
@ Super-empty ® Emptyish
back front front = back
- .

pop, steal

—> linearization

-+-> stabilization

24 /28

Prophecy variables / Prophets
» Primitive prophets
Predict the future of the execution.

» Typed prophets
Prediction belongs to a user-supplied semantic type.

» Wise prophets
Remember past predictions.
Eliminate inconsistent branches.

» Multiplexed prophets
Separate logically independent predictions on a single prophet.

25/28

Conclusion

Takeaway

Iris-based verification frameworks can scale to real-life
programming languages and (relatively) large pieces of
software.

» Practical verification framework.

» Formalization of a realistic OCaml subset.

» Verification of realistic concurrent data structures.
» Extensions of Iris proof techniques.

» OCaml language improvements.

26 /28

-

Not mentioned in this presentation:

» Memory safety.

» “Tail Modulo Cons" program transformation.

» Ongoing work on (parts of) the OCaml GC.

™0 (| |

26 /28

Future work

» Language features

» Exceptions
» Algebraic effects
» Modules & functors

» Coupling with semi-automated verification

» Relaxed memory

27/28

Relaxed memory

Methodology by Glen Mével et al.:

1. Start with the invariant under sequential consistency;

2. Identify how information flows between domains,
i.e. where the synchronization points are;

3. Refine the invariant with memory views accordingly.

28 /28

Thank you for your attention!

	Zoo: A framework for the verification of concurrent OCaml 5 programs
	Parabs: A library of parallel abstractions
	Chase-Lev work-stealing deque
	Conclusion

