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Abstract

The release of OCaml 5 in December 2022 introduced parallelism in the OCaml run-
time. It drove the need for safe and efficient concurrent data structures. New libraries like
Saturn address this need. This is an opportunity to apply and further state-of-the-art
program verification techniques.

We present Zoo, a framework for verifying fine-grained concurrent OCaml 5 algorithms.
Following a pragmatic approach, we define a limited but sufficient fragment of the language
to faithfully express these algorithms: ZooLang. We formalize its semantics carefully via a
deep embedding in the Rocq proof assistant, uncovering subtle aspects of physical equality.
We provide a tool to translate source OCaml programs into ZooLang syntax embedded
inside Rocq, where they can be specified and verified using the Iris concurrent separation
logic.

We illustrate the use of Zoo via a number of case studies: a subset of the OCaml
standard library, a library of persistent data structures, a parallelism-safe file descriptor
from the Eio library, a collection of fined-grained concurrent data structures from the
Saturn library, a task scheduler based on the Domainslib library, a state-of-the-art multi-
word compare-and-set algorithm at the core of the Kcas library.

In Saturn, we verify stacks, queues (list-based, array-based, stack-based), bags and
work-stealing deques. To cover a wide range of use cases, we provide specialized variants:
bounded or unbounded, single-producer or multi-producer, single-consumer or multi-
consumer. In particular, we prove strong specifications for the Chase-Lev work-stealing
deque, which involves intricate logical state and advanced use of Iris prophecy variables.

In the process, we also extend OCaml to more efficiently express certain concurrent
programs, by introducing atomic record fields and atomic arrays. Our work on formalizing
the semantics of physical equality revealed that it is under-specified in existing descriptions
of the language; in existing verification frameworks, the feature is also too restricted to
support compare-and-set in idiomatic OCaml concurrent programs.

Keywords. OCaml, Rocq, program verification, separation logic, concurrent data struc-
tures



Résumé

La sortie d’OCaml 5 en décembre 2022 a introduit le parallélisme dans le langage
OCaml. Cela a suscité le besoin de structures de données concurrentes sires et efficaces.
De nouvelles bibliothéques comme Saturn répondent & ce besoin. C’est une opportunité
d’appliquer et de faire progresser les techniques de vérification de programmes de pointe.

Nous présentons Zoo, un cadriciel pour la vérification d’algorithmes OCaml 5 concur-
rents a grain fin. Suivant une approche pragmatique, nous définissons un fragment limité
mais suffisant du langage pour exprimer fidélement ces algorithmes : ZooLang. Nous for-
malisons soigneusement sa sémantique via un plongement profond dans ’assistant de
preuve Rocq, en insistant sur certains aspects subtils de 1’égalité physique. Nous four-
nissons un outil de traduction de programmes OCaml en syntaxe ZoolLang plongée dans
Rocq, ou ils peuvent étre spécifiés et vérifiés a I'aide de la logique de séparation concur-
rente Iris.

Nous illustrons I'utilisation de Zoo a travers plusieurs études de cas : un sous-ensemble
de la bibliothéque standard d’OCaml, une bibliothéque de structures de données persis-
tantes, un descripteur de fichier str pour le parallélisme issu de la bibliothéque Eio, une
collection de structures de données concurrentes a grain fin provenant de la bibliotheque
Saturn, un ordonnanceur de taches basé sur la bibliothéque Domainslib, un algorithme
compare-and-set multi-mot de pointe au cceur de la bibliothéque Kcas.

Dans Saturn, nous vérifions des piles, des files (basées sur des listes, des tableaux
ou des piles) et des sacs. Afin de couvrir un large éventail d’utilisations, nous proposons
des variantes spécialisées : bornées ou non bornées, a producteur unique ou multiple, a
consommateur unique ou multiple. En particulier, nous prouvons des spécifications fortes
pour la file de vol de taches de Chase-Lev, ce qui implique un état logique complexe ainsi
qu'un usage avancé des variables prophétiques d’Iris.

Ce faisant, nous étendons également OCaml afin d’exprimer plus efficacement certains
programmes concurrents, en introduisant des champs d’enregistrement atomiques et des
tableaux atomiques. Notre travail de formalisation de la sémantique de I’égalité physique
a révélé que cette derniére est sous-spécifiée dans les descriptions existantes du langage
; dans les travaux antérieurs en vérification, cette notion est par ailleurs trop limitée
pour permettre 'utilisation de compare-and-set dans des programmes OCaml concurrents
idiomatiques.

Mots-clés. OCaml, Rocq, vérification de programmes, logique de séparation, structures
de données concurrentes



Résumé substantiel

Un mot sur Coq

Toutes les preuves présentées dans cette thése sont mécanisées a ’aide de ’assistant de
preuve Rocq, anciennement connu sous le nom de Coq. Nous utiliserons systématiquement
le nouveau nom — sans vouloir offenser personne. Pour ceux qui ne le toléreraient pas —
particulierement les lecteurs francais attendant que les bits sont aussi renommés —, nous
tenons a leur disposition une version Coq-ée alternative.

Une petite histoire

Cambium. Au sous-sol' du 48 rue Barrault, a Paris, vit, non pas des antiquités, mais la
fameuse tribu Cambium. A Cambium, les gens ont foi, communient et répandent la parole
de Dieu. Sur les murs et au-dessus de la machine a café, des affiches OCaml témoignent
de leur engagement inébranlable.

Nous fimes des leurs pendant trois ans avec un enthousiasme critique. Ceci est I’histoire
(légérement romancée) de notre thése.

Commande divine. Dieu [2022] dit un jour :
«Vous vérifierez tout OCaml.»

Nous entreprimes donc de vérifier tout OCaml : des transformations de programmes, le
systéme d’exécution (en partie), des programmes et des bibliothéques subtils (séquentiels
et concurrents), etc. Malheureusement, toutefois, nous n’avions pas dix ans pour mener
cette thése. Aussi nous concentrons-nous sur la partie la plus importante de notre travail :
le développement du cadriciel Zoo pour la vérification d’algorithmes concurrents a grain
fin réalistes. Nous laissons pour de futurs travaux la vérification du reste du royaume

OCaml.

OCaml 5. En décembre 2022, au début de notre thése, OCaml 5 fut lancé en fusion-
nant le systéme d’exécution d’OCaml avec celui de Multicore OCaml [Sivaramakrishnan
et al., 2020]. C’est la premiére version d’OCaml & supporter le parallélisme. Elle procura
différentes abstractions élémentaires pour la programmation paralléle a travers la biblio-
théque standard, y compris des fils d’exécution paralléles appelés «domainesy, des réfé-
rences atomiques et des mécanismes de synchronisation bloquants. La bibliothéque tierce
Domainslib offrit un ordonnanceur de taches simple, utilisé pour mesurer les performances
du nouveau systéme d’exécution parallele. Un monde de logiciel paralléle attendait d’étre
inventé.

LAu «rez-de-jardiny, pour étre plus précis — bien que le jardin soit moins flagrant que les poubelles.
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Un écosystéme grandissant. Le parallélisme & mémoire partagée est un domaine de
programmation difficile ; les écosystémes existants (C++, Java, Haskell, Rust, Go...) ont
mis des décennies a faire advenir et maturer des bibliothéques d’abstractions et structures
de données paralléles. Ces derniéres années, une poignée de contributeurs de 1’écosystéme
OCaml ont implémenté des bibliotheques pour la programmation concurrente et paral-
lele, en particulier Saturn [Karvonen and Morel, 2025b], une bibliothéque de structures de
données concurrentes sans verrouillage, Eio [Madhavapeddy and Leonard, 2025], une bi-
bliothéque pour les entrées-sorties asynchrones et la concurrence structurée, et Kcas [Kar-
vonen, 2025a|, une implémentation de mémoire transactionnelle logicielle.

Vérification d’algorithmes concurrents. Raisonner sur des algorithmes concurrents,
en particulier a grain fin, est difficile. Leurs implémentation est souvent trés courte,
quelques douzaines de lignes de code.

Peu nombreux sont les experts sachant concevoir de tels algorithmes mais nombreux
sont les utilisateurs potentiels. Ces algorithmes sont par ailleurs difficiles a tester de facon
exhaustive. Ces caractéristiques en font des sujets idéaux pour la vérification mécanisée
de programmes.

Nous nous sommes donnés pour mission de mécaniser des preuves de correction d’algorithmes
concurrents et de structures de données pendant leur développement méme, en contact
avec leurs auteurs, plutot que des années plus tard. Ce faisant, nous avons non seule-
ment renforcé la confiance en ces nouvelles composantes complexes, mais aussi amélioré
le langage OCaml et son écosystéme de vérification.

Iris

L’état de l'art en vérification mécanisée d’algorithmes concurrents a grain fin est
Iris [Jung et al., 2018b|, une logique de séparation concurrente [Brookes and O’Hearn,
2016] d’ordre supérieur mécanisée avec état fantome personnalisable.

Son expressivité permet de capturer précisément des invariants subtils et raisonner sur
des comportements concurrents exotiques [Dongol and Derrick, 2014], en particulier des
points de linéarisation externes [Vindum et al., 2022| et dépendants du futur [Jung et al.,
2020; Vindum and Birkedal, 2021; Chang et al., 2023; Patel et al., 2024].

Iris a été utilisé avec succes pour vérifier différentes structures de données concur-
rentes : des piles [Iris development team, 2025b; Jung et al., 2023], des files [Jung et al.,
2020; Vindum and Birkedal, 2021; Mével and Jourdan, 2021; Vindum et al., 2022; Carbon-
neaux et al., 2022; Jung et al., 2023; Somers and Krebbers, 2024], une file de priorité [Park
et al., 2025], des patrons de structures de recherche [Krishna et al., 2020; Patel et al., 2021,
2024; Nguyen et al., 2024; Park et al., 2025], des skiplists [Carrott, 2022; Park et al., 2025],
un arbre binaire de recherche [Sharma, 2021].

Iris permet aussi de raisonner sur des modéles mémoire relachés [Mével et al., 2020;
Mével and Jourdan, 2021; Dang et al., 2022; Park et al., 2024, 2025; Jung et al., 2025|.
Dans nos travaux, nous considérons un modeéle mémoire séquentiellement cohérent, mais
le passage au modéle mémoire relaché d’OCaml 5 [Dolan et al., 2018] est la prochaine
étape.

Par ailleurs, Iris est équipé d’automatisation basique grace a Diaframe [Mulder et al.,
2022; Mulder and Krebbers, 2023|. Nous 'utilisons abondamment dans nos travaux.



Apercu

Le reste de la thése est organisé comme suit.

Préparatifs. Dans le Chapitre 2, nous passons en revue les dispositifs pour la program-
mation paralléle fournis par OCaml 5, dont de nouvelles fonctionnalités que nous avons
introduites dans le langage. Dans le Chapitre 3, nous introduisons la logique de séparation
concurrente Iris [Jung et al., 2018b|, en nous concentrant sur les mécanismes nécessaires
pour vérifier des programmes concurrents.

Zoo. Dans le Chapitre 4, nous introduisons Zoo, un cadriciel pour vérifier des programs
OCaml 5 concurrents a grain fin. Dans le Chapitre 5, nous détaillons I'intégration des
variables prophétiques [Jung et al., 2020] dans Zoo, notamment a travers de nouvelles
abstractions qui s’avérerons utiles dans le Chapitre 9.

Etudes de cas. Afin d’illustrer Iapplicabilité de Zoo, nous vérifions des exemples
séquentiels et concurrents variés : des structures de données standards (Chapitre 6),
des structures de données persistentes (Chapitre 7), un descripteur de fichier stir pour
le parallélisme issu de la bibliothéque Eio [Madhavapeddy and Leonard, 2025] (Cha-
pitre 8), des structures de données concurrentes sans verrouillage issues principalement
de la bibliothéque Saturn |[Karvonen and Morel, 2025b] (Chapitre 9), un ordonnanceur
de taches (Chapitre 10), un algorithme compare-and-set multi-mot issu de la bibliothéque
Kcas [Karvonen, 2025a] (Chapitre 11).

Streté mémoire. Dans le Chapitre 12, nous abordons la question de la stireté mémoire
en OCaml 5. Nous proposons une méthodologie formelle pour la vérifier en Zoo par typage
sémantique a la RustBelt [Jung et al., 2018a].

Code OCaml

Les études de cas vérifiées représentent une quantité importante de code. Par consé-
quent, nous avons décidé de ne pas inclure le code dans le corps de la thése. Toutefois,
il est disponible en ligne A et nous procurons systématiquement des liens vers les parties
pertinentes dans le texte.

Mécanisation Rocq
Nos résultats sont mécanisés a 1’aide de l’assistant de preuve Rocq #. Les preuves

étant extrémement fastidieuses a reproduire, nous ne les présentons pas en détail. Pour
les plus intéressantes, nous décrivons les points les plus importants.

Publications

Plusieurs parties de cette thése ont été publiées dans les articles ci-dessous :


https://github.com/clef-men/zoo/tree/phd/lib/
https://github.com/clef-men/zoo/tree/phd/theories/

e (Correct tout seul, sir a plusieurs,
JFLA 2024,
Clément Allain, Gabriel Scherer
(Chapitre 12).

e Snapshottable Stores,
ICFP 2024,
Clément Allain, Basile Clément, Alexandre Moine, Gabriel Scherer
(Section 7.4).

o Saturn: a library of verified concurrent data structures for OCaml 5,
OCaml Workshop 2024,
Clément Allain, Vesa Karvonen, Carine Morel
(Chapitre 9).

e Zoo: A framework for the verification of concurrent OCaml 5 programs using sepa-
ration logic,
JFLA 2025,
Clément Allain
(Chapitres 4, 6 et 8).

e Zoo: A framework for the verification of concurrent OCaml 5 programs using sepa-
ration logic,
POPL 2026,
Clément Allain, Gabriel Scherer
(Sections 2.3.2.2 et 2.3.2.3 et Chapitres 4, 6, 7, 8, 9 et 12).

Deux autres articles sont en préparation, portant respectivement sur :

e La vérification du deque de vol de taches de Chase-Lev (Chapitre 5 et Section 9.7),
tel qu'implémenté dans la bibliothéque Saturn, et la bibliothéque vérifiée Parabs
(Chapitre 10) offrant différentes abstractions paralléles au-dessus d’un ordonnanceur
de taches.

e La vérification d'un algorithme compare-and-set multi-mot de pointe au coeur de la
bibliothéque Kcas (Chapitre 11).

En paralléle, nous avons complété un précédent projet de recherche sur la vérification
de la transformation de programmes Tail Modulo Cons. Ce travail a fait 1’objet de la
publication suivante :

o Tail Modulo Cons, OCaml, and Relational Separation Logic,
POPL 2025,
Clément Allain, Frédéric Bour, Basile Clément, Francois Pottier, Gabriel Scherer.
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Chapter 1

Introduction

1.1 About Coq

In this thesis, all proofs are mechanized in the Rocq proof assistant, formerly known
as Coq. We shall systematically use the new name — no offense meant. For those who
cannot tolerate it — especially French people waiting for bits to be also renamed —, we
can provide an alternative Coq-ed version.

1.2 A little story

Cambium. In the basement! of 48 rue Barrault, Paris, lives not antiques but the well-
known Cambium tribe. At Cambium, people have faith, commune and spread the word of
God. On the walls and above the coffee machine, OCaml posters testify to their enduring
commitment.

We were enthusiastically although critically part of the tribe for three years. This is
the (slightly romanticized) story of our thesis.

Divine command. God [2022] once said:
“You shall verify everything in OCaml.”

So we went verifying everything in OCaml: program transformations, (parts of) the run-
time system, tricky programs and libraries (both sequential and concurrent), etc. Unfor-
tunately, though, we did not have ten years to finish this thesis. Consequently, we focus
on the most important part of our work: the development of the Zoo framework for the
verification of realistic fine-grained concurrent algorithms. We leave the verification of
the rest of the OCaml kingdom for future work.

OCaml 5. In December 2022, at the start of our thesis, OCaml 5 was released by merg-
ing the Multicore OCaml [Sivaramakrishnan et al., 2020 runtime. It is the first version of
OCaml to support parallelism. It provided basic parallel programming facilities through
the standard library, including parallel threads called “domains”, atomic references and
blocking synchronization mechanisms. The third-party library Domainslib offered a sim-
ple task scheduler, used to benchmark the parallel runtime. A world of parallel software
was waiting to be invented.

LAt the “garden level”, to be more precise — although the garden is less obvious than the trash cans.
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A growing ecosystem. Shared-memory parallelism is a difficult programming domain;
existing ecosystems (C++, Java, Haskell, Rust, Go...) took decades to evolve comprehen-
sive libraries of parallel abstractions and data structures. In the last couple years, a
handful of contributors to the OCaml ecosystem have been implementing libraries for
concurrent and parallel programming, in particular Saturn [Karvonen and Morel, 2025b],
a library of lock-free concurrent data structures, Eio [Madhavapeddy and Leonard, 2025],
a library for asynchronous IO and structured concurrency, and Kcas [Karvonen, 2025a],
an implementation of software transactional memory.

Verification of concurrent algorithms. Concurrent algorithms, especially fine-grained
ones, are difficult to reason about. Their implementation tend to be fairly short, a few
dozens of lines. There is only a handful of experts able to write such code, and many
potential users. They are difficult to test comprehensively. These characteristics make
them ideally suited for mechanized program verification.

We embarked on a mission to mechanize correctness proofs of OCaml concurrent
algorithms and data structures as they are being written, in contact with their authors,
rather than years later. In the process, we not only gained confidence in these complex new
building blocks, but also improved the OCaml language and its verification ecosystem.

1.3 Iris

The state-of-the-art approach for mechanized verification of fine-grained concurrent
algorithms is Iris [Jung et al., 2018b|, a mechanized higher-order concurrent separation
logic [Brookes and O’Hearn, 2016| with user-defined ghost state.

Its expressivity allows to precisely capture subtle invariants and reason about exotic
concurrent behaviors [Dongol and Derrick, 2014, especially external [Vindum et al., 2022|
and future-dependent [Jung et al., 2020; Vindum and Birkedal, 2021; Chang et al., 2023;
Patel et al., 2024] linearization points.

Iris has been used successfully to verify various concurrent data structures: stacks |Iris
development team, 2025b; Jung et al., 2023|, queues [Jung et al., 2020; Vindum and
Birkedal, 2021; Mével and Jourdan, 2021; Vindum et al., 2022; Carbonneaux et al., 2022;
Jung et al., 2023; Somers and Krebbers, 2024|, a priority queue |[Park et al., 2025, search
structure templates [Krishna et al., 2020; Patel et al., 2021, 2024; Nguyen et al., 2024;
Park et al., 2025], skiplists [Carrott, 2022; Park et al., 2025], a binary search tree [Sharma,
2021].

Iris also supports relaxed memory verification [Mével et al., 2020; Mével and Jourdan,
2021; Dang et al., 2022; Park et al., 2024, 2025; Jung et al., 2025|. In our work, we
assume a sequentially consistent memory model, but moving to the OCaml 5 relaxed
memory model [Dolan et al., 2018] is the next thing on the list.

Moreover, Iris comes with basic automation thanks to Diaframe [Mulder et al., 2022;
Mulder and Krebbers, 2023]. We use it extensively in our work.

1.4 Overview

The rest of the thesis is organized as follows.
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Preparations. In Chapter 2, we review OCaml 5’s parallel programming facilities, in-
cluding new features that we introduced in the language. In Chapter 3, we introduce the
Iris [Jung et al., 2018b] concurrent separation logic, focusing on the mechanisms needed
to verify concurrent programs.

Zoo. In Chapter 4, we introduce Zoo, a framework for verifying fine-grained concurrent
OCaml 5 programs. In Chapter 5, we detail Zoo’s support for prophecy variables [Jung
et al., 2020], including new abstractions that we will be useful in Chapter 9.

Case studies. To illustrate the applicability of Zoo, we verify various sequential and
concurrent case studies: standard data structures (Chapter 6), persistent data structures
(Chapter 7), a parallelism-safe file descriptor from Eio [Madhavapeddy and Leonard,
2025] (Chapter 8), lock-free data structures mainly from Saturn [Karvonen and Morel,
2025b] (Chapter 9), a task scheduler (Chapter 10), an implementation of multi-word
compare-and-set from Kcas |[Karvonen, 2025a| (Chapter 11).

Memory safety. In Chapter 12, we address the question of memory safety in OCaml 5.
We propose a formal methodology to verify it in Zoo using semantic typing a la Rust-
Belt [Jung et al., 2018a).

1.5 OCaml code

The verified case studies represent a significant amount of code. Consequently, we
decided not to include it in the body of the thesis. However, it is available online # and
we systematically provide links to the relevant parts in the text.

1.6 Rocq mechanization

Our results are mechanized in the Rocq proof assistant #. Since proofs would be
extremely tedious to reproduce, we do not present them in detail. For the most interesting
ones, we describe important points.

1.7 Publications

Several parts of this thesis were published in the following articles:

o (Correct tout seul, str a plusieurs,
JFLA 2024,
Clément Allain, Gabriel Scherer
(Chapter 12).

e Snapshottable Stores,
ICFP 2024,
Clément Allain, Basile Clément, Alexandre Moine, Gabriel Scherer
(Section 7.4).
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e Saturn: a library of verified concurrent data structures for OCaml 5,
OCaml Workshop 2024,
Clément Allain, Vesa Karvonen, Carine Morel
(Chapter 9).

e Zoo: A framework for the verification of concurrent OCaml 5 programs using sepa-
ration logic,
JFLA 2025,
Clément Allain
(Chapters 4, 6 and 8).

e Zoo: A framework for the verification of concurrent OCaml 5 programs using sepa-
ration logic,
POPL 2026,
Clément Allain, Gabriel Scherer
(Sections 2.3.2.2 and 2.3.2.3 and Chapters 4, 6 to 9 and 12).

Two other articles are in preparation, respectively presenting:

e The verification of the Chase-Lev work-stealing deque (Chapter 5 and Section 9.7)
as implemented in the Saturn library and the verified Parabs library (Chapter 10)
offering parallel abstractions atop a task scheduler,

e The verification of a state-of-the-art multi-word compare-and-set algorithm at the
core of the Kcas library (Chapter 11).

In parallel, we also completed a previous research project on the verification of the
Tail Modulo Cons program transformation. This work led to the following publication:

o Tail Modulo Cons, OCaml, and Relational Separation Logic,
POPL 2025,
Clément Allain, Frédéric Bour, Basile Clément, Francois Pottier, Gabriel Scherer.
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Chapter 2

Parallelism in OCaml 5

OCaml 5 was released in December 2022. It is the first version of the OCaml program-
ming language to support parallelism [Sivaramakrishnan et al., 2020]. In this chapter, we
review the current parallel programming facilites, including primitive abstractions and
third-party libraries.

2.1 Domains

OCaml 5 introduced domains®, the units of parallelism. Domains are distinct from
threads®, the units of concurrency that existed before OCaml 5. Multiple domains can
run OCaml code in parallel, on separate cores. Inside a domain, multiple threads can
coexist; they are executed concurrently, one at a time. Domains and threads share the
same memory space and garbage collector. Domain-local storage? is provided primitively.
Currently, thread-local storage is not provided primitively but has been implemented in
a third-party library*.

In this thesis, especially in Chapter 4, we will only consider domains. More generally,
we will focus on parallel facilites and mostly forget about concurrent facilites, including
threads and algebraic effects [Sivaramakrishnan et al., 2021].

Domains are managed through the standard Domain® module. For example, one
can (naively®) compute Fibonacci numbers using the fibonacci function of Figure 2.1.
Domain.spawn fn creates a new domain to execute fn. Domain. join d blocks until do-
main d finishes and returns the result of its computation (fn in the previous example).

Another common primitive that we will often use in Chapter 9 is Domain.cpu_relax,
of type unit -> unit. It is used to make a domain back off to reduce contention when
multiple domains try to access some shared state in parallel. It is meant to improve
performance and does not affect correctness. For even better performance, exponential
backoff, as implemented in the Backoff [Karvonen and Morel, 2025a| library, may be
relevant.

https://ocaml.org/manual/5.3/api/Domain.html

’https://ocaml.org/manual/5.3/api/Thread.html

3https://ocaml.org/manual/5.3/api/Domain.DLS.html

‘https://github.com/c-cube/thread-local-storage

Shttps://ocaml.org/manual/5.3/api/Domain.html

6 Actually, this implementation rapidly fails as it spawns too many domains, see Section 2.4 for a
correct implementation.
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let rec fibonacci n =
if n <= 1 then

1

else
let doml = Domain.spawn (fun () -> fibonacci (n - 1)) in
let dom2 = Domain.spawn (fun () -> fibonacci (n - 2)) in

Domain. join doml + Domain.join dom2
Figure 2.1: Implementation of the Fibonacci function using Domain

2.2 Memory model

A simple and natural concurrency model is sequential consistency [Lamport, 1979]:
every concurrent behavior corresponds to a sequential interleaving of the instructions of
the different domains. OCaml 5 adopted a relazed memory model [Dolan et al., 2018|
that allows more behaviors. Programmers have to make sure their program is correct for
every valid behavior.

In practice, a good mental model compatible with the operational semantics [Dolan
et al., 2018| consists in assuming domains have distinct views of shared memory. When a
domain modifies a shared data structure, the modification is not immediately observable
by other domains. To make this modification public, the initial domain has to transfer
its memory view using synchronization mechanisms (see Section 2.3).

In this thesis, we will not consider relaxed behaviors; we will assume a sequentially
consistent memory model. This assumption is not realistic in the sense that proving an
OCaml program is correct under a sequentially consistent memory model is not sufficient
to prove it correct under the relaxed memory model. We discuss this limitation in Sec-
tion 4.4. The main reason is that verifying a parallel scheduler like the one presented in
Chapter 10 for a sequentially consistent memory model is already quite challenging.

2.3 Synchronization

To synchronize domains, OCaml 5 provides blocking and non-blocking mechanisms.

2.3.1 Blocking synchronization

The standard library provides basic blocking synchronization mechanisms: lock”,
semaphore®, condition variable?. Their role is both to perform synchronization and control
access to shared resources. For instance, a lock can be used to enforce mutual exclusion.
We further describe and specify these mechanisms in Chapter 6.

2.3.2 Non-blocking synchronization

Non-blocking mechanisms only performs synchronization. They are crucial for imple-
menting lock-free algorithms, as in Chapter 9.

"https://ocaml.org/manual/5.3/api/Mutex.html
8https://ocaml.org/manual/5.3/api/Semaphore.html
https://ocaml.org/manual/5.3/api/Condition.html
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type 'a t =
'a list Atomic.t

let create () =
Atomic.make []

let rec push t v =
let old = Atomic.get t in
let new_ = v :: old in
if not 0@ Atomic.compare_and_set t old new_ then (
Domain.cpu_relax () ;
push t v

)

let rec pop t =
match Atomic.get t with
0 ->
None
| v :: new_ as old ->
if Atomic.compare_and_set t old new_ then (
Some v
) else (
Domain.cpu_relax () ;
pop t
)

Figure 2.2: Concurrent stack implementation

2.3.2.1 Atomic references

The only non-blocking synchronization mechanism available until version 5.4 is atomic
references. According to the operational semantics, an atomic reference is a special mem-
ory location carrying both a physical value and a logical memory view.

The Atomic!? standard module provides primitives to manipulate atomic references.
Atomic.make v creates a new reference containing v. Atomic.set r v writes v to r and
releases the memory view of the current domain. Symmetrically, Atomic.get r reads the
content of r and acquires the memory view of the last writer domain.

Besides these three basic primitives, a few others are provided. Atomic.exchange r v
writes v to r and returns the former value. Atomic.fetch_and_add r n atomically in-
crements r by n and returns the former value. Last but not least,
Atomic.compare_and_set r vl v2 atomically compares the content of r with v1 and
returns either false if the comparison fails or true if the comparison succeeds; in this
case, it sets r to v2.

Using atomic references, we implement a lock-free concurrent stack [Treiber, 1986] in
Figure 2.2. The data structure consists of an atomic reference to a list of values. The
push and pop operations follow a pattern that is very common in lock-free programming;:
(1) collect information about the shared state; (2) decide whether to keep going or abort

Onttps://ocaml.org/manual/5.3/api/Atomic.html
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type 'a t =
'a atomic_loc

val get
'at -> 'a
val set
'a t -> 'a -> unit

val exchange :

'at -> 'a -> 'a
val compare_and_set :

'at -> 'a -> 'a -> bool
val fetch_and_add :

int t -> int -> int

val incr :

int t -> unit
val decr :

int t -> unit

Figure 2.3: Stdlib.Atomic.Loc interface

based on that information; (3) if the operation keeps going, locally prepare a new desired
state; (4) try to commit the new state using Atomic.compare_and_set; (5) if it succeeds,
the operation itself succeeds; (6) otherwise, the operation restarts. Interestingly, this
pattern boils down to the notion of atomic transaction.

2.3.2.2 Atomic fields

Atomic references are enough to write concurrent algorithms — for example, they
are sufficient for the memory-safe algorithms of the Saturn library!!. However, atomic
references introduce an indirection that can make the algorithm both more complex and
less efficient. Consequently, to avoid this indirection, programmers mindful of performance
use a low-level trick: the first field of a record can be made atomic by reinterpreting the
record as an atomic reference using Obj.magic. This trick (currently) works because
(1) the low-level representation of an atomic reference is the same as a one-field record
and (2) the OCaml compiler does not reorder fields. It comes at the cost of readability,
memory safety and possibly correctness — such tricks may violate assumptions made by
the compiler. Besides, it is very limited: only one field can be made atomic.

This situation made both programming and verification more difficult. Together with
Gabriel Scherer, we introduced atomic record fields in the language based on a design
proposed by Basile Clément. It was integrated upstream in May 2025, to be included in
the upcoming release of OCaml 5.4.

Declaring a record field as atomic simply requires an [@atomic] attribute — and could
eventually become a proper keyword of the language. For example, atomic references can
be redefined this way:

HWe discuss memory safety in Chapter 12. Suffice it to say that some algorithms in Saturn are
memory-unsafe because they use unsafe features of the language, e.g. Obj.magic.
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type 'a atomic_ref =
{ mutable contents: 'a [Gatomic]; }

As expected, the usual field accesses — e.g. r.contents and r.contents <- v — are
performed atomically. However, expressing other atomic primitives is more tricky. Indeed,
we would like to avoid adding a new language construct for each of them.

We introduced a built-in type 'a atomic_loc representing an atomic location holding
a value of type 'a. Such locations are constructed using a syntax extension:

[%atomic.loc <expr>.<field>]

The new Atomic.Loc standard module, whose interface is given in Figure 2.3, is the
counterpart of Atomic for atomic locations. For example, one can write:

Atomic.Loc.fetch_and_add [Jatomic.loc r.contents] 1

Internally, a value of type 'a atomic_loc is represented as a pair of a record and an
integer offset for the desired field, and the atomic.loc extension builds this pair in a well-
typed manner. When a primitive of the Atomic.Loc module is applied to an atomic.loc
expression, the compiler can optimize away the construction of the pair.

2.3.2.3 Atomic arrays

We also implemented atomic arrays'?, another facility commonly requested by authors
of efficient concurrent algorithms. More precisely, we introduced a new Atomic.Array
module in the standard library; its interface is given in Figure 2.4. As of today, it only
includes a few functions corresponding to the Atomic primitives. We plan to integrate
the feature upstream.

Our implementation builds on top of the 'a Atomic.Loc.t type and relies on two
low-level primitives that we introduced in the compiler:

external unsafe_index
'a Atomic.Array.t -> int -> 'a Atomic.Loc.t
= "%atomic_unsafe_index"
external index
'a Atomic.Array.t -> int -> 'a Atomic.Loc.t
= "Jatomic_index"

Given an atomic array and an index, the index function returns an atomic location
corresponding to the element at the index, after performing a bound check. unsafe_index
omits the bound check — additional performance at the cost of memory-safety — and
allows to express the atomic counterpart of Array.unsafe_get and Array.unsafe_set.
The primitives of the module Atomic.Loc can then be used directly on these atomic
locations.

2.4 Third-party libraries

The naive implementation of the Fibonacci function of Figure 2.1 does not scale up
because it spawns too many domains — potentially many more than the number of

2https://github.com/clef-men/ocaml/tree/atomic_array
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type 'a t

val make :
int -> 'a -> 'a t

val init :
int -> (int -> 'a) -> 'a t

val length
'a t -> int

val unsafe_get

'at -> int -> 'a
val get

'at -> int -> 'a

val unsafe_set

'a t -> int -> 'a -> unit
val set

'a t -> int -> 'a -> unit

val unsafe_exchange :
'at -> int -> 'a -> 'a
val exchange
'at -> int -> 'a -> 'a

val unsafe_compare_and_set

'at -> int -> 'a -> 'a -> bool
val compare_and_set

'at ->int -> 'a -> 'a -> bool

val unsafe_fetch_and_add
int t -> int -> int -> int

val fetch_and_add
int t -> int -> int -> int

Figure 2.4: Stdlib.Atomic.Array interface
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module Task =
Domainslib.Task

let num_domains =
Domain.recommended_domain_count ()

let rec fibonacci pool n =
if n <= 1 then
1
else
let taskl = Task.async pool (fun () -> fibonacci pool (n - 1)) in
let task2 = Task.async pool (fun () -> fibonacci pool (n - 2)) in
Task.await pool taskl + Task.await pool task2

let fibonacci n =
let pool = Task.setup_pool "num_domains:(num_domains - 1) () in
let res = Task.run pool (fun () -> fibonacci pool n) in
Task.teardown_pool pool ;
res

Figure 2.5: Implementation of the Fibonacci function using Domainslib

available cores. Not only does performance rapidly degrade but OCaml 5 also has a limit
on the number of active domains.

To improve this implementation — and more generally to write parallel algorithms
—, we would like a more flexible interface — a higher-level interface such that we would
not have to manage domains ourselves. The fact is that OCaml 5 only provides low-level
parallel primitives, leaving third-party libraries propose high-level abstractions. Since the
release of OCaml 5, a number of such libraries have been developed.

Domainslib [Multicore OCaml development team, 2025|, Eio [Madhavapeddy and
Leonard, 2025], Miou [Calascibetta, 2025], Moonpool [Cruanes, 2025| and a few other
libraries provide task schedulers. Internally, these schedulers manage a pool of domains.
They also manage a set of tasks that are executed on the different domains of the pool.
The ordering of the tasks and the way they can interact with the scheduler — especially
via algebraic effects — depend on the library.

For example, using Domainslib, we can reimplement the Fibonacci function, as shown
in Figure 2.5. The Task.async function spawns a new task and returns a promise that can
be awaited using Task.await to get the result of the task. In Chapter 10, we implement
and verify a similar scheduler.

These schedulers rely both on locking mechanisms and concurrent data structures to
manage the domains and the tasks. The Saturn [Karvonen and Morel, 2025b| library
provides a collection of standard lock-free data structures ready for use. For example,
Domainslib relies on the work-stealing deque implemented in Saturn; Moonpool relies on
a bounded version. In Chapter 9, we verify part of Saturn, including the work-stealing
deque (bounded and unbounded).

In this growing ecosystem, other parallel abstractions have been developed. Riot |Os-
tera, 2025| provides a parallel scheduler based on the actor model [Hewitt et al., 1973].
Kcas |[Karvonen, 2025a| provides a software transactional memory [Shavit and Touitou,
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1995 implementation.

2.5 Future work

In this chapter, we presented two new language features that we introduced to better
express concurrent algorithms: atomic record fields (Section 2.3.2.2) and atomic arrays
(Section 2.3.2.3). Another useful feature that we were asked to address by concurrency
experts is record field cache line alignment, which consists in providing programmers an
idiomatic way to force a record field to be aligned to cache line size. Similarly, we should
also support cache-line-aligned atomic arrays (each cell would be properly aligned). These
features are crucial for performance!?, to avoid false sharing'* — see, for example, the
two highly efficient C++ concurrent queues developed by Rigtorp [2025a,b].

While the Atomic!® module does provide a primitive make_contended to create a
cache-line-aligned atomic reference, there is currently no counterpart for atomic fields
and atomic arrays. Instead, as usual, programmers rely on unsafe expedients [Karvonen,
2025b].

Bhttps://www.1024cores.net/home/lock-free-algorithms/first-things-first
“https://en.wikipedia.org/wiki/False_sharing
5https://ocaml.org/manual/5.3/api/Atomic.html
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Chapter 3

Iris arsenal

Separation logic [O’Hearn et al., 2001; Reynolds, 2002; O’Hearn, 2007 is a logic of
resources. It allows expressing both partial ownership — permission to access a resource
— and full ownership — exclusive permission to access a resource — in a composable
way. For example, the fractional [Boyland, 2003| points-to assertion ¢ +% v gives read-
only permission while the full points-to assertion ¢ — v gives read and write permission.
Crucially, assertions are stable under interference: as long as a thread holds ¢ +% v, ¢
points to v no matter what other threads do. Separating conjunction P, x P, combines
disjoint resources P; and P,. For example, {1 — vy * {y — vy implies ¢; and ¢y are
distinct. It enables local reasoning, as illustrated by the frame rule:

{P}e{vQ}
{PxR}e{v.Qx*R}

From top to bottom, this rules says that we can always add resources to a specification;
they are unaffected by the program. From bottom to top, it says we can forget about
some resources to specify a program, focusing on strictly needed resources.

In this thesis, we use Iris [Jung et al., 2018b|, a state-of-the-art separation logic.
Iris has been fully mechanized [Krebbers et al., 2018] in the Rocq proof assistant. It
is currently the most advanced logic for verifying fined-grained concurrent algorithms,
thanks to flexible and powerful mechanisms. In this chapter, we present most of the
mechanisms we need except prophecy variables, that we describe in Chapter 5.

3.1 User-defined higher-order ghost state

One of the most important features of Iris is its user-defined higher-order ghost state,
a very flexible form of ghost state.

Ghost state, as opposed to physical state, is a formal technique that consists in intro-
ducing purely logical resources in order to verify a program. For instance, when verifying
a fine-grained concurrent data structure, it is often the case that the physical state of the
data structure does not determine the logical state; in other words, many distinct logical
states may correspond to the same physical state. In this case, ghost state can be used
to keep track of the logical state throughout the execution.

Iris offers higher-order ghost state. This means ghost state may refer to (with a
restriction) and therefore depends on the type of Iris propositions. Naturally, Iris propo-
sitions depends on ghost state. Consequently, ghost state and propositions are defined in
a mutually recursive way. This feature is crucial for defining invariants (see Section 3.6)
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and verifying complex concurrent algorithms, especially those with external linearization
points [Dongol and Derrick, 2014].

Iris also offers user-defined ghost state. This means the user of the logic can intro-
duce new types of resources according to his needs. More precisely, the (base) logic is
parametrized by a user-supplied resource algebra. In this thesis, in particular in Chapter 9,
we heavily rely on this feature.

3.2 Ghost update

During the proof, we need to update the ghost state. In Iris, this is performed primarily
using the basic update modality: = P means P holds after a ghost state update. These
updates are purely logical; they are not visible in the program.

3.3 Persistent assertion

In Iris, assertions are affine: using a resource consumes it, removes it from the proof
context. Some assertions, however, are persistent. Once a persistent assertion holds, it
holds forever; using it does not consume it. This enables duplication (P = P % P) and
sharing. In particular, pure (meta-level) assertions embedded into the logic are persistent.

Formally, persistence is defined in terms of the persistence modality:

persistent P = P+ O P

Informally, O P means P holds without asserting any exclusive ownership; in other words,
it only expresses knowledge. Naturally, O P is persistent.

3.4 Sequential specification

In this thesis, we use two kinds of specifications: sequential specifications — described
in this section — and atomic specifications — described in Section 3.7. Sequential speci-
fications take the form of Hoare triples:

{Pye{®}

where P is an Iris assertion, e an expression and ® an Iris predicate over values!.
Informally, this triple says: if the precondition P holds, we can safely execute e and,
if the execution terminates, the returned value satisfies the postcondition ®. It is a
persistent resource, allowing executing e many times.
Most of the time, we will present sequential specifications in a more spacious way, like

in the following example:
STACK-PUSH-SPEC-SEQ

stack-model ¢ vs
stack_push t v
(). stack-model ¢ (v :: vs)

This specification says that, given the ownership of stack ¢t — represented by stack-model ¢ vs
—, stack_push t v, if it terminates, pushes v onto the stack and returns the unit value.

!We define expressions and values in Chapter 4.
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3.5 Weakest precondition
Hoare triples are defined as follows:
{P}e{®}2DO(P xwpe {®})

As in Section 3.3, the persistence modality is responsible for making the resource persis-
tent.

The weakest precondition resource wp e {CID} is not persistent: contrary to Hoare
triples, it can depend on exclusive ownership. Informally, it says that: once only, we can
execute e and, if the execution terminates, the returned value satisfies the postcondition
.

In practice, we use weakest precondition to specify higher-order functions: functions
that take functions as arguments. Indeed, higher-order functions typically run the func-
tions they are given only once, or once per element in the case of iterators. Therefore,
requiring a Hoare triple is often stronger than necessary; requiring a weakest precondition
may be enough.

3.6 Invariant

To share exclusive resources between threads, Iris provides a special mechanism: un-
variants. The proposition L represents an invariant containing proposition P and anno-
tated with namespace 1. As we will see, this namespace prevents reentrancy (accessing the
same invariant twice); when it is the full mask T, we may omit it. Informally, L states
that P holds at each step of the program execution. Crucially, invariants are persistent,
so they can be shared.

Invariants can be allocated using the following rule:

WP-INV-ALLOC

P L—*wpe{cb}

wpe{CD}

They can only be accessed atomically (during a single execution step), as shown by
the rule:

WP-INV-ACCESS
atomic e LCE& DP—*ng\LE{’U.DP*(I)U}

wpge{q)}

As e is atomic (reduces to a value in a single step), it is safe to access the invariant.

Accessing L means: (1) opening the invariant, that is acquiring P and marking ¢
(removing it from mask £); (2) closing it after executing e, that is giving P back in the
postcondition of the weakest precondition.

Importantly, for soundness reasons, P is weakened using the later modality > P. While
P > P always holds, > P - P does not always hold. The usual way of getting rid of a
later modality is to take a step in the program, e.g. reduce e.

In general, weakest preconditions wpg e {(ID} are annotated with a mask £ to keep
track of opened invariants. When this mask is the full mask, meaning no invariants were
opened, we may omit the annotation, as in Section 3.5.
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Most of the time, WP-INV-ACCESS is the only rule needed to interact with an invariant
during the proof. However, it is possible and sometimes necessary to access an invariant
in a purely logical way, without actually taking a step. This is expressed by the following
rule:

INV-ACCESS

L L C &

N (> P x (> P — EVBF True))

This rule is very similar to WP-INV-ACCESS except there is no weakest precondition and
therefore no backing atomic expression. It relies on the fancy update modality €122 P,
which subsumes the basic update modality of Section 3.2. The masks £ and &, represent
the enabled invariants respectively “outside” and “inside” the fancy update; when they
are both the full mask, we may omit them. To produce this modality, one can use the
following rules:

FUPD-WP WP-FUPD FUPD-TRANS FUPD-WAND
Bewpee { P} wpg e {v. By ® v} S E2psfs p Sfp P
Wpe € {(I)} Wpg € {(I)} SIE&)P £IESQQ

where B, P £ ¢ P.

3.7 Atomic specification

In the sequential specification STACK-PUSH-SPEC-SEQ of Section 3.4, the operation
is given the exclusive ownership of the stack, which lets it update the data structure
without interference from other threads. For a concurrent stack — and more generally
for a concurrent data structure —, however, things get more complicated.

Indeed, requiring exclusive ownership of the stack would inhibit concurrency. Thus, we
typically introduce a persistent predicate that we call the invariant of the data structure
— not to be confused with Iris invariants. This invariant contains the resources shared
by the different threads.

Having an invariant enables concurrency but does not say how the data structure is up-
dated. To specify concurrent operations, we use the notion of logical atomicity [da Rocha Pinto
et al., 2014|. An operation is said to be logically atomic if it appears to take effect atom-
ically at some point during its execution; this point is called the linearization point of
the operation. Birkedal et al. showed that this notion implies linearizability [Herlihy and
Wing, 1990| in a sequentially consistent memory model.

In Iris, logical atomicity takes the form of atomic specifications:

{ Poriv } (T- Poup ) € 5 € (7.Q) {®}

P,y and ® are standard private pre- and postcondition for the user of the specification,
similarly to Hoare triples. P, and @) are public pre- and postcondition; they specify the
linearization point of the operation. Quantifiers T represent the demonic nature of Pp,:
the exact state at the linearization point, given by P,,, is unknown until it happens.
Quantifiers 7 represent the angelic nature of (Q: at the linearization point, the operation
can choose how to instantiate the new state (). Mask &£ represents the opened invariants
at the linearization point.
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In sum, the atomic specification says: if the private precondition P,, holds, we can
safely execute e and, if the execution terminates, (1) the returned value satisfies the private
postcondition ® and (2) at some point during the execution, the state was atomically
updated from P, to Q.

Most of the time, we will present atomic specifications in a more spacious way, like in
the following example:

STACK-PUSH-SPEC-ATOMIC
stack-inv ¢ ¢

~ vs. stack-model ¢ vs
stack_pusht v §¢

stack-model ¢ (v :: vs)

This specification says that, given a concurrent stack ¢, stack_push ¢ v, if it terminates,
atomically updates the logical content of ¢ from some values vs to v :: vs and returns the
unit value.

3.8 Atomic update
Atomic specifications are defined as follows:

{ Poriv }(T- Py ) ¢ § E(Y.Q){ P} L2 v
Pprz‘vﬁk
(Z.Pu | 7.Q=2 Ty %V TY),
wp € {\If}

Similarly to Hoare triples, it relies on the weakest precondition notion. More precisely, it
requires to prove wp e { v } for any ¥ under two hypotheses: (1) the private precondition
Pyriv, (2) an atomic update of the form (Z. Py | J.Q = P), where P 0Ty U T 7.
Crucially, as ¥ is universally quantified, the only way to prove wp e { \If} is to use this
atomic update.

Essentially, an atomic update is the Iris reification of a linearization point. For exam-
ple, the atomic update for STACK-PUSH-SPEC-ATOMIC corresponds to:

(vs.stack-model t vs | stack-model ¢ (v :: vs) = True),

As a first approximation, an atomic update behaves like an invariant, in the sense that it
can be atomically accessed. However, contrary to invariants, there are two ways to close
an atomic update after opening it, as shown by the rule:

AU-ACCESS
<f-Ppub |§Q3 P>g

N2 3T Py * ((Ppus "B (T Py | 7.Q 2 P)o) A (V7.Q "7 P))

Opening the atomic update yields P,,; for some Z along with a conjunction representing
two ways of closing the update. (1) We can abort: we give back P, and retrieve the
atomic update. (2) We can commit: we choose 7 and exchange the public postcondition
@ for the postcondition P. This mechanism can be compared to the programming pattern
mentioned in Section 2.3.2.1. It is basically a logical retry loop for reasoning about atomic
transactions.
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Chapter 4

Z00: A framework for the verification
of concurrent OCaml 5 programs

HeapLang. In the Iris literature, most works on the verification of concurrent algo-
rithms [Jung et al., 2020; Vindum and Birkedal, 2021; Vindum et al., 2022; Carrott, 2022;
Carbonneaux et al., 2022; Mulder et al., 2022; Mulder and Krebbers, 2023; Jung et al.,
2023; Somers and Krebbers, 2024; Krishna et al., 2020; Patel et al., 2021, 2024; Lee et al.,
2025] rely on HeapLang [Iris development team, 2025a], the exemplar Iris language. Hea-
pLang is a concurrent, imperative, untyped, call-by-value functional language. To the best
of our knowledge, it is currently the closest language! to OCaml 5 in the Iris ecosystem.

We started our verification effort in HeapLang, but it eventually proved impractical to
verify realistic OCaml libraries. Indeed, it lacks basic abstractions such as algebraic data
types (tuples, mutable and immutable records, variants) and mutually recursive functions.
Consequently, verifying OCaml programs in HeapLang requires non-trivial translation
choices and introduces various encodings, to the point that the relation between the
source and verified programs can become difficult to maintain and reason about. It also
has very few standard data structures that can be directly reused. These limitations are
well-known in the Iris community.

Physical equality. Another, maybe less obvious, shortcoming of HeapLang is the
soundness of its semantics with respect to OCaml, in other words how faithful it is to
the original language. One ubiquitous — particularly in lock-free algorithms relying on
low-level atomic primitives — and subtle point is physical equality. In Section 4.2.3, we
show that (1) HeapLang’s semantics for physical equality is not compatible with OCaml
and (2) OCaml’s informal semantics is actually too imprecise to verify basic concurrent
algorithms. To remedy this, we propose a new formal semantics for physical equality and
structural equality. We hope this work will influence the way these notions are specified
in OCaml.

ZooLang. We developed a more practical OCaml-like verification language: ZooLang.
This language consists of a subset of OCaml 5 equipped with a formal semantics and an
Iris-based program logic. This subset includes the basic abstractions mentioned above
as well as atomic record fields (see Section 2.3.2.2). Following a pragmatic approach,

!The recent Osiris [Seassau et al., 2025] language targets a subset of OCaml. However, it does not
support parallelism and its practicality remains to be shown. See Section 4.3 for further discussion.
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project

dune-project theories
1lib domainslib
domainslib scheduler__code.v
dune scheduler__opaque.v
scheduler.ml — scheduler__types.v
scheduler.mli saturn
saturn
dune
queue.mli

$ ocaml2zoo project theories

Figure 4.1: Translation of a Dune project using ocaml2zoo

we added new features as we applied it to more verification scenarios. ZooLang is fully
mechanized in Rocq.

Zoo. We were influenced by the Perennial framework [Chajed et al., 2019, 2021, 2022;
Chang et al., 2023|, which achieved similar goals for the Go language with a focus on
crash-safety. As in Perennial, we also provide a translator from (a subset of) OCaml to
Zoolang: ocaml2zoo. We call the resulting framework Zoo.

4.1 Zoo in practice

In this section, we give an overview of the framework. We provide a minimal example?
demonstrating its use.

To verify an OCaml library, the first thing to do is to run ocaml2zoo, which translates
OCaml source files® into Rocq files containing their ZooLang representation. This tool can
process entire Dune projects. Moreover, external OCaml dependencies are supported; it
is up to the user to provide their verified Rocq version, either in the current Rocq project
or through Rocq dependencies.

For example, Figure 4.1 shows the translation of a simple project with two libraries.
Each .ml source file gives three Rocq files corresponding to (1) ZooLang types, (2) Zo-
oLang code and (3) instructions for opacifying the code once it is verified, acting like
a basic abstraction barrier. Assuming queue.ml implements a concurrent stack as in
Figure 2.2, the file queue__code.v generated by ocaml2zoo contains the ZooLang repre-
sentation given in Figure 4.2 — we postpone the description of ZooLang to Section 4.2.

Once this translation is done, the user can specify and verify the generated code in
Rocq, using the full Iris arsenal presented in Chapter 3. For example, the specification
STACK-PUSH-SPEC-ATOMIC corresponds to the Rocq lemma of Figure 4.3.

’https://github.com/clef-men/zoo-demo
3 Actually, ocam12zoo processes binary annotation files (.cmt files).
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Definition stack_create : val :=

fun: <> =>
ref [].

Definition stack_push : val :=
rec: "push" "t" "v" =>
let: "old" := !"t" in
let: "new_ " := "y"
if: 7 CAS "t".[contents]
domain_yield () ;;
I|pushll lI-tH IIVII

"old" in
"o0ld" "new_" then (

).

Definition stack_pop : val :=
rec: "pop" "t" =>
match: !"t" with
| [1 =>
§None
| "v" :: "new_" as "old" =>
if: CAS "t".[contents] "old" "new_" then (
‘Some( "v" )
) else (
domain_yield () ;;
"pop" "t
)

end.

Figure 4.2: ZoolLang translation of the concurrent stack of Figure 2.2 as generated by

ocaml2zoo

Lemma stack_push_spec t ¢ v :
<<
stack_inv t ¢
| VW vs, stack_model t vs

>>>
stack_push t v @ T¢

<<<
stack_model t (v :: vs)

| RET (); True
>>> .
Proof.

Qed.

Figure 4.3: Rocq lemma corresponding to STACK-PUSH-SPEC-ATOMIC
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4.2 ZooLang

We now present the ZooLang language: its low-level syntax (Section 4.2.1), high-level
syntax (Section 4.2.2), semantics (Section 4.2.5) and derived Iris program logic.

4.2.1 Low-level syntax

The low-level ZooLang syntax # is displayed in Figure 4.4. Users do not usually
interact directly with it; the high-level syntax (see Section 4.2.2) is more convenient.

Literals. Literals are be divided into two categories: source literals and runtime literals;
the former can appear in source code while the latter are produced during execution. A
source literal is either a boolean or an unbounded integer. A runtime literal is either a
memory location, a prophecy variable [Jung et al., 2020] or poison; prophecy variables
are represented using logical identifiers that will play a crucial role in the semantics.

Values. A value is either a literal, a function or an immutable block. A function consists
of a list of recursive functions and the index of the function in this list.

An immutable block consists of a tag and a list of value fields; it is annotated with a
generativity whose meaning will be explained in Section 4.2.3.

Expressions. An expression is either a value, a named variable, a (possibly recursive)
function, an application, a let-binding, a unary operator, a binary operator, a physical
comparison, a conditional, a for-loop, an allocation, a block, a (shallow) match, a block tag
read, a block size read, a memory read, a memory write, an atomic exchange, an atomic
compare-and-set, an atomic fetch-and-add, a fork, a domain-local read, a domain-local
write, a prophecy variable, a prophecy resolution.

Similarly to values, a block consists of a tag and a list of expression fields; it is
annotated with a mutability whose meaning will also be explained in Section 4.2.3.

A match expression consists of a list of regular branches and a fallback branch (a
binder and an expression body). A match branch consists of a shallow pattern and an
expression body; supporting deep patterns is left for future work — we never needed them
in practice.

Coercions. For convenience, we use the following coercions: LitBool, LitInt, LitLoc,
LitProph, Val, VallLit.

Syntactic sugar. For convenience again, we define some syntactic sugar displayed at
the bottom of Figure 4.4.

4.2.2 High-level syntax

On top of the low-level syntax, we define the high-level syntax # of Figure 4.5 using
Rocq notations, omitting mutually recursive toplevel functions that are treated specially.
This is the surface syntax as it appears in Rocq. Overall, it should look familiar to the
OCaml programmer — as least, it is meant to.

Expressions include standard constructs like booleans, integers, (possibly recursive)
anonymous functions, applications, let-bindings, sequences, unary and binary operators,
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boolean b e B
integer n e Z
location 14
prophet identifier  pid
block identifier bid
tag tag € N
index 0 € N
identifier x € String
binder bdr, f ::= BinderAnon | BinderNamed z
unary operator unop = UnopNeg | UnopMinus | Unoplsimmediate
binary operator binop ::= BinopPlus | BinopMinus
| BinopMult | BinopQuot | BinopRem
| BinopLand | BinopLor | BinopLsl| | BinopLsr
| BinopLe | BinopLt | BinopGe | BinopGt
mutability mut = Mutable
| ImmutableNongenerative
| ImmutableGenerativeWeak
| ImmutableGenerativeStrong
generativity gen = Generative bid’ | Nongenerative
literal lit ::= LitBool b | LitInt n | LitLoc ¢
| LitProph pid | LitPoison
value v = VallLit lit
| ValRecs i Tec
| ValBlock gen tag v
expression e = Val v | Varz
| Rec f bdr e|App e es | Let bdr e e
| Unop unop e | Binop binop e; ey | Equal ¢ e
| If ey e ey | Forep es es
| Alloc e; ey | Block mut tag €
| Match ¢ bd?“fb € W
| GetTag e | GetSize ¢
| Load ey ey | Store e ey e3
’ XChg €1 €2 | CAS €y €1 €9 | FAA €1 €2
| Fork e
| Getlocal | SetLocal e
| Proph | Resolve ¢y ¢; e
recursive definition rec = {fun: f; param: bdr; body: e}
pattern pat = {tag: tag; fields: bdr; as: bdr}
branch br = { pat: pat; expr: e }
Seq e; ey £ Let BinderAnon ¢; e
Tuple e £ Block Nongenerative 0 €
Proj, e £ Load e (Val (ValLit (LitInt 7)))
ValFun bdr e £  ValRecs 0 [{ fun: BinderAnon; param: bdr; body: ¢ }]
ValTuple ©7 £ ValBlock Nongenerative 0 T
ValUnit £ ValTuple []

Figure 4.4: Low-level syntax
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Rocq term
constructor
projection
record field
identifier
boolean

integer

binder

unary operator
binary operator

toplevel value

expression

branch

ROE I TrRI QT
S

br

:||: m M m

String

B

Z

<> | s

~|_

+|-|*| ‘quot® | ‘rem‘ | ‘land‘ | ‘lor® | ‘1sl¢| ‘lsr*
A<l l2]=]#]==] 1=

and | or

t]b|n

fun: :Bl...:rn=>6|rec:fx1...:cn=>e

§C' | ‘C (v1, ... u) | Cogynnyvy)

[0]v ot v

tls|b|n

fun: z;...2, => e|rec: fa...z, => e e e

let: x :=e;iney | € ;; €

let: fm...m, := € in ey | letrec: f 21...%, := € in e
let: ‘Cx...2, := € 1in ¢ | let: 7y, ...,7, := € in ey
De|e® e

if: ey then e, (else e)’

for: z :=¢; to e; begin ez end

§C' | ‘C (er, ..., e) | Cery ... yey) | €.<proj>

[1]e :: e

‘CHe, ... ey | {er, o yen} | e {fld} | er <-{fld} ey
ref e|le| e <- e

match: ey with bryl...| br, (I_ (as s)" => ¢)? end
e.[fld] | Xchg e; ey | CAS €1 ey e3 | FAA e e

Proph | Resolve ¢y €1 €

C(z...1,)" (as s)" =>e

[1(ass)’=>e|m :: 1 (ass)’ =

_>e

Figure 4.5: High-level syntax (omitting mutually recursive toplevel functions)
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conditionals, for-loops, tuples. In any expression, one can refer to a Rocq term represent-
ing a ZooLang value (of type val) using its Rocq identifier. ZooLang is deeply embedded:
variables are quoted as strings.

Data constructors are supported through two constructs: §C' represents a constant
constructor (e.g. §None) while ‘C' (ey, ...,e,) represents a non-constant constructor
(e.g. ‘Some (e)). Unlike OCaml, ZooLang has projections of the form e.<proj> (e.g.
(ep, €3) .<1>) that can be used to obtain a specific component of a tuple or data construc-
tor.

Mutable memory blocks are constructed using either the untagged record syntax
{e1,...,e,} or the tagged record syntax ‘C' {e;,...,e,}. Reading a record field can
be performed using e.{fld} and writing to a record field using e; <-{fld} e;. References
are also supported through the usual constructs: ref e creates a reference, !e reads a
reference and e; <- e, writes into a reference.

Algebraic data types. To simulate variants and records, we designed a machinery to
define constructors, projections and record fields. For example, one may define a list-like
type with:

Notation "'Nil'" := (in_type "t" 0) (in custom zoo_tag).
Notation "'Cons'" := (in_type "t" 1) (in custom zoo_tag) .

Users do not need to write this incantation directly, as it is generated by ocaml2zoo from
the OCaml type declaration. Suffice it to say that it introduces the two tags in the zoo_tag
custom entry, on which the notations for data constructors rely. The in_type term is
needed to distinguish the tags of distinct data types; crucially, it cannot be simplified
away by Rocq, as this could lead to confusion during the reduction of expressions.

Given this incantation, one may directly use the tags Nil and Cons in data constructors
using the corresponding ZooLang constructs:

Definition map : val :=
rec: "map" "fn" "t" =>
match: "t" with
| Nil =>
§Nil
| Cons "x" "t" =>
let: "y" := "fn" "x" in
‘Cons( "y", "map" "fn" "t" )
end.

Similarly, one may define a record-like type with two mutable fields £1 and f£2:

Notation "'f1'" := (in_type "t" 0) (in custom zoo_field).
Notation "'f2'" := (in_type "t" 1) (in custom zoo_field).

Definition swap : val :=
fun: "t" =>
let: "f1" := "t" . {f1} in
Iltll <_{f1} "t”_{f2} ,’
ngn <—{f2} nfEqQMn
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Mutually recursive functions. Zoolang supports non-recursive and recursive func-
tions but only toplevel mutually recursive functions. It is non-trivial to properly handle
mutual recursion: when applying a mutually recursive function, a naive approach would
replace calls to sibling functions by their respective bodies, but this typically makes the
resulting expression unreadable. To prevent it, the mutually recursive functions have to
know one another to preserve their names during g-reduction. We simulate this using
some boilerplate that can be generated by ocaml2zoo. For example, one may define two
mutually recursive functions f and g as follows:

Definition f_g := (
reCS: Ilfll IIXII => IIgll ||X||
and: llgll IIXII => Ilfll IIXII
)%hzoo_recs.

(* boilerplate *)
Definition f := ValRecs O
Definition g := ValRecs 1
Instance : AsValRecs' 0
1

fg.
f_g.
f_g
Instance : AsValRecs' g 1 f_g

;g] . Proof. done. Qed.
]. Proof. done. Qed.

Concurrent primitives. ZooLang supports concurrent primitives both on atomic ref-
erences (see Section 2.3.2.1) and atomic record fields (see Section 2.3.2.2) according to
the table below. The OCaml expressions listed in the left-hand column translate into
the ZooLang expressions in the right-hand column. Notice that an atomic location
[%atomic.loc e.fld] (of type _ Atomic.Loc.t) translates directly into e. [fld].

OCaml 700

Atomic.get ¢ le

Atomic.set e e e1 <- ey
Atomic.exchange e; e Xchg e;. [contents] ey
Atomic.compare_and_set e; e €3 CAS ¢;. [contents] ey e3
Atomic.fetch_and_add e; e FAA e;. [contents] e
Atomic.Loc.exchange [atomic.loc e;.fld] e, Xchg e . [fld] e
Atomic.Loc.compare_and_set [%atomic.loc e;.fld] ey e3 CAS e;.[fld] e e3
Atomic.Loc.fetch_and_add [Jatomic.loc e;.fld] e FAA e. [fld] e

One important aspect of this translation is that atomic accesses (Atomic.get and
Atomic.set) correspond to plain reads and writes. This is because we are working in a
sequentially consistent memory model: there is no difference between atomic and non-
atomic memory locations.

4.2.3 Physical equality

The notion of physical equality is ubiquitous in fine-grained concurrent algorithms.
It appears not only in the semantics of the (==) operator, but also in the semantics of
the Atomic.compare_and_set primitive (see Section 2.3.2.1), which atomically sets an
atomic reference to a desired value if its current content is physically equal to an expected
value. This primitive is commonly used to try committing an atomic operation in a retry
loop, as in the push and pop functions of Figure 2.2.
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4.2.3.1 Physical equality in HeapLang

In HeapLang, this primitive is provided but restricted. Indeed, its semantics is only
defined if either the expected or the desired value fits in a single memory word in the
HeapLang value representation: literals (booleans, integers and pointers*) and literal in-
jections®; otherwise, the program is stuck. In practice, this restriction forces the program-
mer to introduce an indirection [Iris development team, 2025b; Jung et al., 2020; Vindum
and Birkedal, 2021] to physically compare complex values, e.g. lists. Furthermore, when
the semantics is defined, values are compared using their Rocq representations; physical
equality boils down to Rocq equality.

4.2.3.2 Physical equality in OCaml

In OCaml, physical equality is more tricky and often considered dangerous. Structural
equality, which we describe in Section 4.2.4, should be the preferred way of comparing
values. However, physical equality is typically much faster than structural equality, as it
basically compiles to only one assembly instruction. Also, the Atomic.compare_and_set
requires the comparison to be atomic, ruling out structural equality.

In particular, the semantics of physical equality is non-deterministic. To see why, con-
sider the case of immutable blocks, representing constructors and immutable records, e.g.
Some 0. The physical comparison of two seemingly identical immutable blocks, according
to the Rocq representation (essentially a tag and a list of fields), may return false:

let test = Some 0 == Some O (* maybe false *)

Indeed, at runtime, a non-empty immutable block is represented by a pointer to a tagged
memory block. In this case, physical equality is just pointer comparison. It is clear that
two pointers being distinct does not imply the pointed memory blocks are. In other
words, we cannot determine the result of physical comparison just by looking at the
abstract values.

The question is then: what guarantees do we get when physical equality returns true
and when it returns false? Given such guarantees, denoted by v; &~ vy and v; % vy, the
non-deterministic semantics is reflected in the logic through the following specification:

True
Equal v v

b. if b then v, ~ v, else v; % 1,

The OCaml manual documents a partial specification for physical equality, which is
precise for basic types such as references, but does not clearly extend to structured values
containing a mix of immutable and mutable constructors. The only guarantee that it
provides for all values is: if two values are physically equal, they are also structurally
equal. This means we do not learn anything when two values are physically distinct.

In the following, we will explore both cases, looking at the optimizations that the
compiler or the runtime system may perform. We will show that the aforementioned
guarantee is arguably not sufficient to verify interesting concurrent programs and attempt
to establish stronger guarantees.

4HeapLang allows arbitrary pointer arithmetic and therefore inner pointers. This is forbidden in both
OCaml and ZooLang, as any reachable value has to be compatible with the garbage collector.
SHeapLang has no primitive notion of constructor, only pairs and injections (left and right).

41



4.2.3.3 When physical equality returns true

Let us go back to the concurrent stack of Figure 2.2 and more specifically the push func-
tion. To prove STACK-PUSH-SPEC-ATOMIC, we rely on the fact that, if Atomic. compare_and_set
returns true, we actually observe the same list of values in the sense of Rocq equality.
However, assuming only structural equality as per OCaml’s specification of physical equal-
ity, this cannot be proven. To see why, consider, e.g., a stack of references ('a ref). As
structural equality is indeed structural, it traverses the references without comparing their
physical identities. In other words, we cannot conclude the references are exactly the same.
Hence, we cannot prove the specification.

This conclusion might seem surprising and counterintuitive. Indeed, we know that
physical equality essentially boils down to a comparison instruction, so we should be able
to say more. Departing from OCaml’s imprecise specification, let us attempt to establish
stronger guarantees.

The easy cases are mutable blocks (locations) and functions. Each of these two classes
is disjoint from the others. We can reasonably assume that, when physical equality returns
true and one of the compared values belongs to either of these classes, the two values are
actually the same in Rocq. As far as we are aware, there is no optimization that could
break this.

In the low-level representation of OCaml values, booleans, integers and empty im-
mutable blocks are represented by immediate integers. These low-level representations
induce conflicts: two seemingly distinct values in Rocq may have the same low-level rep-
resentation. For example, the following tests all return true®:

let testl = Obj.repr false == Obj.repr O (* true *)
let test2 = Obj.repr None == 0Obj.repr O (* true *)
let test3 = Obj.repr [] == Obj.repr O (* true *)

The semantics of unrestricted physical equality has to reflect these conflicts. In our experi-
ence, restricting compared values similarly to typing is quite burdensome; the specification
of polymorphic data structures using physical equality has to be systematically restricted.
In summary, when physical equality on immediate values returns true, it is guaranteed
that they have the same low-level representation.

Finally, let us consider the case of non-empty immutable blocks. At runtime, they are
represented by pointers to tagged memory blocks. At first approximation, it is tempting
to say that physically equal immutable blocks are definitionally equal in Rocq. Alas, this
is not true. To explain why, we have to recall that the OCaml compiler and the runtime
system (e.g., through hash-consing) may perform sharing: immutable blocks containing
physically equal fields may be shared. For example, the following tests may return true:

let testl
let test2

Some 0 == Some O (* maybe true *)
[0;1] == [0;1] (* maybe true *)

On its own, sharing is not a problem. However, coupled with representation conflicts,
it can be surprising. Indeed, consider the any type defined as:

type any = Any : 'a -> any

The following tests may return true:

60bj.repr is an unsafe primitive revealing the memory representation of a value.
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let testl = Any false == Any O (* maybe true *)
let test2 = Any None == Any O (* maybe true *)
let test3 = Any [] == Any O (* maybe true *)

Now, going back to the push function of Figure 2.2, we have a problem. Given a
stack of any, it is possible for the Atomic.compare_and_set to observe a current list
(e.g., [Any 0]) physically equal to the expected list (e.g., [Any false]) while these are
actually distinct in Rocq. In short, the expected specification STACK-PUSH-SPEC-ATOMIC
is incorrect. To fix it, we would need to reason modulo physical equality, which is non-
standard and quite burdensome.

We believe this really is a shortcoming, at least from the verification perspective.
Therefore, we propose to extend OCaml with generative immutable blocks”. These gener-
ative blocks are just like regular immutable blocks, except they cannot be shared. Hence,
if physical equality on two generative blocks returns true, these blocks are definitionally
equal in Rocq. At user level, this notion is materialized by generative constructors. For
instance, to verify the expected push specification, we can use a generative version of lists:

type 'a list =
| Nil
| Cons of 'a * 'a list [@generative]

4.2.3.4 When physical equality returns false

Most formalizations of physical equality in the literature do not give any guarantee
when physical equality returns false. Many use-cases of physical equality, in particular
retry loops, can be verified with only sufficient conditions on true. However, in some
specific cases, more information is needed.

Consider the Rcfd module from the Eio [Madhavapeddy and Leonard, 2025] library,
an excerpt of which is given in Figure 4.6%. Thomas Leonard, its author, suggested
that we verify this real-life example because of its intricate logical state (see Chapter 8).
However, we found out that it is also relevant regarding the semantics of physical equality.
Essentially, it consists in wrapping a file descriptor in a thread-safe way using reference-
counting. At creation in the make function, the wrapper starts in the Open state. At some
point, it can switch to the Closing state in the close function and can never go back to
the Open state. Crucially, the Open state does not change throughout the lifetime of the
data structure.

The interest of Rcfd lies in the close function. First, the function reads the state.
If this state is Closing, it returns false; the wrapper has been closed. If this state is
Open, it tries to switch to the Closing state using Atomic.Loc.compare_and_set; if this
attempt fails, it also returns false. In this particular case, we would like to prove that
the wrapper has been closed, or equivalently that Atomic.Loc.compare_and_set cannot
have observed Open. Intuitively, this is true because there is only one Open.

Obviously, we need some kind of guarantee related to the physical identity of Open
when Atomic.Loc.compare_and_set returns false. If Open were a mutable block, we
could argue that this block cannot be physically distinct from itself; no optimization
we know of would allow that. Unfortunately, it is an immutable block, and immutable
blocks are subject to more optimizations. In fact, something surprising but allowed® by

"https://github.com/clef-men/ocaml/tree/generative_constructors
8We make use of atomic record fields as introduced in Section 2.3.2.2.
9This has been confirmed by OCaml experts developing the Flambda backend.
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type state =
| Open of Unix.file_descr
| Closing of (unit -> unit)

type t =
{ mutable ops: int [@atomic] ;
state: state [@atomic] ;

}

let make fd =
{ ops= 0; state= Open fd }

let closed =
Closing (fun O -> ()
let close t =
match t.state with
| Closing _ ->
false
| Open fd as prev ->
let close () = Unix.close fd in
let next = Closing close in
if Atomic.Loc.compare_and_set [%atomic.loc t.statel prev next then (
if t.ops ==
&% Atomic.Loc.compare_and_set [%atomic.loc t.state] next closed
then
close () ;
true
) else (
false

Figure 4.6: Refd module from Eio (excerpt)
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OCaml can happen: wunsharing, the dual of sharing. Indeed, any immutable block can
be unshared, i.e. reallocated. For example, the following test may theoretically return
false:

let x = Some O
let test = x == x (* maybe false *)

Going back to Rcfd, we have a problem: in the second branch, the Open block corre-
sponding to prev could be unshared, which would make Atomic.Loc.compare_and_set
fail. Hence, we cannot prove the expected specification; in fact, the program as it is
written has a bug.

To remedy this unfortunate situation, we propose to reuse the notions of generative
immutable blocks, that we introduced to prevent sharing, to also forbid unsharing by the
OCaml compiler — we implemented this in an experiment branch of OCaml.

In our semantics, each generative block is annotated with a logical identifier® repre-
senting its physical identity, much like a location for a mutable block. If physical equality
on two generative blocks returns false, the two identifiers are necessarily distinct. Given
this semantics, we can verify the close function. Indeed, if Atomic.Loc.compare_and_set
fails, we now know that the identifiers of the two blocks, if any, are distinct. As there
is only one Open block whose identifier does not change, it cannot be the case that the
current state is Open, hence it is Closing. We can verify this function after adding the
following annotation:

type state =
| Open of Unix.file_descr [Qgenerative]
| Closing of (unit -> unit)

4.2.3.5 Summary

In summary, we give the following informal specification to physical equality in Zo-
oLang, which can serve as a basis for specifying physical equality in OCaml:

e On values whose low-level representation is an integer (integers, booleans, empty
blocks), physical equality is equality of low-level integers.

e On mutable blocks, represented as memory locations, physical equality is equality
of locations.

e On generative immutable blocks, physical equality is equality of identities.

e On non-generative immutable blocks, physical equality is under-specified, but it im-
plies that the two blocks have the same tags and their fields are recursively physical
equal.

e Two values that do not fall into any of the above categories are never physically
equal.
4.2.3.6 Formalization

Formally, we define two relations # v ~ v, and v; % v, that respectively satisfy the
rules of Figure 4.7 and Figure 4.8. In the Rocq mechanization, we developed a tactic #

10 Actually, for practical reasons, we distinguish identified and unidentified generative blocks.
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SIMILAR-REFL SIMILAR-SYM

SIMILAR-TRANS
V1 = V9 V1 = U M = U Vg = U3
V1 = Vo Uy = N N =~ U3

SIMILAR-BOOL SIMILAR-INT

SIMILAR-LOC
blzbg ny < N €1%£2
b1 = by ny = ng b =1y

SIMILAR-BLOCK-NONGENERATIVE
ValBlock Nongenerative tag, 7; =~ ValBlock Nongenerative tag, U,

tag, = tag, N\ U1 = Vg

SIMILAR-BLOCK-GENERATIVE

0 < length 7; V 0 < length 7,
ValBlock (Generative bid;) tag, 7; ~ ValBlock (Generative bids) tag, Us

bldl == bldl VAN tagl = ta92 N 51 == 52

SIMILAR-NONGENERATIVE-GENERATIVE

0 < length 7, V 0 < length 7,
ValBlock Nongenerative tag, 7; ~ ValBlock (Generative bidy) tag, U2

False

SIMILAR-LIT-RECS

SIMILAR-LIT-BLOCK
lit ~ ValRecs 7 Tec

0 < length ©

lit ~ ValBlock gen tag v
False

False

SIMILAR-RECS-BLOCK
ValRecs i Tec ~ ValBlock gen tag v

False

Figure 4.7: Value similarity
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NONSIMILAR-SYM

U1 55 ]

) ?5 U1
NONSIMILAR-BOOL NONSIMILAR-INT NONSIMILAR-LOC
by % by ny % ny 0y % Uy
517&172 711%77»2 517&52

NONSIMILAR-BLOCK-EMPTY
ValBlock gen, tag, [| # ValBlock gen, tag, ||

tag, # tag,

NONSIMILAR-BLOCK-GENERATIVE
0 <length ©  ValBlock (Generative bid;) tag v % ValBlock (Generative bidy) tag v

bid, # bids

Figure 4.8: Value non-similarity

that automatically simplifies physical equality assumptions using these rules; in practice,
we found it to be very effective.

Crucially, the two relations also satisfy the following “compatibility” rules:
NONSIMILAR-SIMILAR
SIMILAR-OR-NONSIMILAR
0 % v

Vo = U3
Ulz’l)g\/’l)laél}g

v 7 U3
SIMILAR-OR-NONSIMILAR is required for proving that physical equality is always safe to

execute; without it, physical equality would have to be restricted to “safe” values. As for
NONSIMILAR-SIMILAR, it is needed to verify the algorithm of Chapter 11.

4.2.4 Structural equality

Structural equality # is also supported. More precisely, it is not part of the semantics
of the language but implemented using low-level primitives (see Figure 4.9). The reason
is that it is in fact difficult to specify for arbitrary values. In general, we have to compare
graphs — which implies structural comparison may diverge.

Accordingly, the specification of v; = vy requires the (partial) ownership of a memory
footprint corresponding to the union of the two compared graphs, giving the permission to
traverse them safely. If it terminates, the comparison decides whether the two graphs are
bisimilar (modulo representation conflicts, as described in Section 4.2.3). The resulting
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let rec structeq vl v2 =

if Obj.is_int v1 then

if Obj.is_int v2 then
vl == v2
else
false

else if Obj.is_int v2 then
false

else (
Obj.tag vl == Obj.tag v2 &&
let sz = Obj.size vl in
sz == 0Obj.size v2 &&
structeq_aux vl v2 sz

)

and structeq_aux vl v2 i =

if 1 == 0 then
true

else
leti=1-11in
structeq (Obj.field vl i) (Obj.field v2 i) &&
structeq_aux vl v2 i

Figure 4.9: Implementation of structural equality

specification is:

val-traversable footprint v, x
val-traversable footprint vy x
structeq-footprint footprint

U = U
b. if b then
val-structeq footprint v; vy
else

val-structneq footprint v, vy

Obviously, this general specification is not very convenient to work with. Fortunately,
for abstract values (without any mutable part), we can prove a much simpler variant
saying that structural equality coincides with physical equality:

val-abstract v; *
val-abstract v,
U1 = U2
b. if b then v, = 1, else v; % vy

4.2.5 Semantics

We define the small-step operational semantics # of ZooLang in four stages: (1) pure
steps (Figure 4.10) involve only the executed expression; (2) base steps (Figure 4.11) also
involve the state of the execution; (3) head steps (Figure 4.12) also involve the identifier
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STEP-REC
Rec f bdr e =5 ValRecs 0 [{ fun: f; param: bdr; body: e }|

STEP-APP
Tec [i] = Some rec

App (ValRecs i Tec) v *= eval-app Tec rec.param v rec.body

STEP-UNOP

TEP-LET
S eval-unop op v = Some v’

Let bdr vy es == subst bdr v; e,

pure

Unop op v P55 o/

STEP-BINOP

eval-binop op v, = Some v’ STEP-IF

If b e eg 5 if b then e else e,

Binop op v vy =5 0/

STEP-FOR
For ny ny e =5 if decide (ny < n;) then
ValUnit
else

Seq (App e ny) (For (ny + 1) ny e)

STEP-BLOCK-IMMUTABLE-NONGENERATIVE
Block ImmutableNongenerative tag 7 2~ ValBlock Nongenerative tag v

STEP-BLOCK-IMMUTABLE-GENERATIVE-WEAK
pure

Block ImmutableGenerativeWeak tag 7 = ValBlock (Generative None) tag ©

STEP-MATCH-IMMUTABLE o
eval-match tag (length ¥) (SubjectBlock gen ©) bdrp, ep br = Some e

Match (ValBlock gen tag ) bdrp ep br = e

STEP-GET-TAG-IMMUTABLE
0 < length ©

pure

GetTag (ValBlock gen tag 7) == encode-tag tag

STEP-GET-SIZE-IMMUTABLE STEP-GET-FIELD-IMMUTABLE
0 < length @ 7 [fld] = Some v
GetSize (ValBlock gen tag v) == length ¥ Load (ValBlock gen tag v) fld == v

Figure 4.10: Semantics: pure step
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STEP-PURE STEP-EQUAL-FAIL STEP-EQUAL-SUCCESS

pure
er 25 e ~
1 2 v % Uy (U0
b b b
e1,0 =5 ey, 0 Equal v; ve,0 =5 false, o Equal v; ve,0 =5 true, o
STEP-ALLOC

0<n  o.headers[(] =None  Vi.i <n — o.heap[({+ i)] = None
Alloc tag n, o 2% ¢, state-alloc ¢ { tag: tag; size: n} (replicate n ValUnit) o

STEP-BLOCK-MUTABLE
0 <length v  o.headers[¢] = None  V i.i < length 7 — o.heap[(¢ + i)] = None

Block Mutable tag 7,0 %% ¢, state-alloc ¢ {tag: tag; size: length T} T o

STEP-IMMUTABLE-GENERATIVE-STRONG
Block ImmutableGenerativeStrong tag v, 0 —— ValBlock (Generative (Some bid) tag 7,0

STEP-MATCH-MUTABLE
o.headers [¢] = Some hdr

eval-match hdr.tag hdr.size (SubjectlLoc ¢) bdrp, ep br = Some e

base

Match ¢ bdrp, ep br,o == e, 0

STEP-GET-TAG-MUTABLE STEP-GET-SIZE-MUTABLE
o.headers [(] = Some hdr o.headers [(] = Some hdr
GetTag (, 0 22 encode-tag hdr.tag, o GetSize (, 0 2 encode-tag hdr.size, o

STEP-GET-FIELD-MUTABLE
o.heap [(¢ + fid)] = Some v

Load ¢ fld, o =5 v, 0

STEP-SET-FIELD
o.heap [(¢ + fid)] = Some w

Store ¢ fld v, 0 2% ValUnit, o [heap — o.heap [¢ + fld — v]|

STEP-XCHG
o.heap [(¢ + fid)] = Some w

Xchg (ValTuple [¢; fid]) v,0 2% w, o [heap — o.heap [( + fld — v]]

STEP-CAS-FAIL
o.heap [(¢ + fid)] = Some v v % v

CAS (ValTuple [¢; fld]) v, 1,0 =5 false, o

STEP-CAS-SUCCESS
o.heap [(¢ + fid)] = Some v v R

base

CAS (ValTuple [¢; fid]) v v, 0 == true, o [heap — o.heap [( + fld — w,]]

STEP-FAA
o.heap [(£ + fid)] = Some n,

FAA (ValTuple [¢; fid]) ny, 0 2% ny, o [heap — o.heap [( + fld — ny + ny]]

Figure 4.11: Semantics: base step
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STEP-BASE

se STEP-FORK
€1,01 — €2,02 val-immediate v
€1, 01 "% €3, 0, [], [ Fork e, *=5% ValUnit, o [locals — o.locals + [v]], [e], [

STEP-GET-LOCAL
o.locals [tid] = Some v

Getlocal, o % v,0,][,]]

STEP-SET-LOCAL
o.locals [tid] = Some w

SetLocal v, 0 %) ValUnit, o [locals — o.locals [tid — v]], [], []

STEP-PROPH
pid ¢ o.prophets

Proph, o % pid, o [prophets — o.prophets W {pid}], [, []

STEP-RESOLVE
head ;] —
€,0 — W,0, €K

Resolve e pid v, 0 %) w, o', e,k [(pid, w, v)]

Figure 4.12: Semantics: head step

of the current domain and may emit prophecy observations and spawn new domains; (4)
thread-pool steps (Figure 4.13) involve the entire execution configuration, including all
spawned domains. We omit the definition of auxiliary functions, which can be found in
the mechanization: eval-app, eval-unop, eval-binop, eval-match, state-alloc.

Overall, this semantics is mostly standard; in particular, the semantics of prophecy
variables is taken directly from Jung et al. [2020]. The execution state carries not only
a mutable heap but also immutable headers attached to memory locations and mutable
domain-local storage.

Note that the evaluation order is well-defined for all constructs: right-to-left for appli-
cation, binary operators, allocations, memory accesses and prophecy resolution; left-to-
right for for-loop. Theoretically speaking, this is unsound since OCaml has unspecified
evaluation order!!. However, it is well-known!? that not assuming a right-to-left evaluation
order for application is extremely damaging from the verification perspective. Moreover,
our evaluation order is mostly respected by the OCaml compiler and many programmers
rely on it.

4.2.6 Program logic

ZooLang comes with a Iris-based program logic # displayed in Figure 4.14: reasoning
rules expressed in separation logic and proved correct with respect to the semantics. We
omit the rules for prophecy variables, that we present separately in Chapter 5.

Uhttps://ocaml.org/manual/5.3/expr.html#sss:expr-functions-application
2https://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris_heap_lang/lang.v#L12
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evaluation frame k = AppUOwy | App ¢ O

| Let bdr O e

| Unop unop O

| Binop binop O vy | Binop binop e; O

| Equal O v, | Equal ¢; O

| H: O €1 €2

| For O ey eg| For vy O eg

| Alloc O vy | Alloc ¢; O

| Block mut tag (e 4 [O] + )

| Match O bd?“fb € W

|  GetTag O

| GetSize O

|  Load OJ vy | Load ¢ O

| Store O vy v3 | Store e; O w3 | Store e; e O
|  Xchg O vy | Xchg e; O

|  CAS v v O| CAS ¢y O vy | CAS €y ¢ O
| FAA O v |FAA ¢ O

|

|

SetLocal (J
Resolve k& v; vy | Resolve ey (1 vy | Resolve ey e O
evaluation context K O k[K]
STEP-HEAD o
tp [tid] = Some (K [e1]) €1,01 =g+ €,09,€,K

tp, o1 B tp [tid — K [ey]] # €, 09

Figure 4.13: Semantics: thread pool step
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WP-POST WP-BIND WP-PURE

d v wpg e {v. wpg K[v] {®}} e ® e wpee {0}
wpe v { @} wpe Kle] { @} wpg e { D}
WP-ALLOC
0<tag*x0<n
WP-EQUAL
Alloc tag n § €
> ((1)1 % vy —* P false> A (v = vy =P true)) 0.0 —y, {tag: tag; size: n } *
wpe Equal vy vy {CI)} meta-token ¢ T x
Xk (e+iy— 0
1€[0;n)

WP-BLOCK-MUTABLE
0 < length ©

Block Mutable tag v § €
0. 0 —y, { tag: tag; size: length 7 }
meta-token ¢ T x

>l< (l+1i)— v

I VETD

WP-BLOCK-GENERATIVE
True

Block ImmutableGenerativeStrong tag v § £
res. 3 bid.
res = ValBlock (Generative (Some bid)) tag ©

WP-MATCH o
eval-match hdr.tag hdr.size (SubjectLoc ¢) bdry ep br = Some e
>0 —h hdr prge{q)}

wpg Match ¢ bdrp, e br { @}

WP-TAG WP-SIZE
> { >y, hdr > ® (encode-tag hdr.tag) > ¢y, hdr > ® hdr.size
wps GetTag ¢ { & } wp; GetSize ¢ { @ }
WP-LOAD WP-STORE WP-XCHG
q B
>0+ fid) = v o (0 + fd) = w >+ fld) — w

Load ¢ fid § £

Xchg (ValTuple [¢; fid]) v § €

Store ¢ fid v § &
O.(l+fid)—wv

res. res = v x

(04 fid) % v

res. res = w *

0+ fid) — v

WP-CAS
>0+ fid) — v
><<vaév1 —*(€+ﬂd)>—>v—*<1>fa|se> A (v~ —*(£+ﬂd)l—>vz—*(1>true)>

wpg CAS (ValTuple [¢; fid]) v v { P}

Figure 4.14: Program logic (excerpt) (1/2)
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WP-FAA
l>(€ +ﬂd) = Ny
FAA (ValTuple [¢; fld]) ny § €
Tes. res = ny *
(0 + fid) — ny + ny

WP-GET-LOCAL

WP-FORK > tid s v
> (V tid v. tid — v = wp e § tid {_. True }) >® O GetLocal § tid § €
wpg Fork e { @} res. res = v *
tid li>| v

WP-SET-LOCAL
> tid = w
Setlocal v § tid § £
O. tid — v

Figure 4.14: Program logic (excerpt) (2/2)

Most rules are straightforward; we use sequential specifications (see Section 3.4) and
weakest preconditions (see Section 3.5) possibly annotated with a domain identifier. The
assertion ¢ +% v represents the fractional ownership of location ¢ and the knowledge
that it contains value v; when the fraction ¢ is 1, it represents the full ownership of /.
Similarly, the assertion tid +%| v represents the fractional ownership of the domain-local
storage of domain #id and the knowledge that it contains v. The persistent assertion
¢ >y, hdr represents the knowledge that location ¢ has header hdr. Finally, the assertion
meta-token ¢ & is part of the meta theory'® that allows to persistently associate meta data
to locations:

META-TOKEN-DIFFERENCE META-SET
& C & meta-token ¢ &, & C & meta-token ¢ £
meta-token ¢ &£; * |3 meta ¢ & ©

meta-token ¢ (& \ &)

META-AGREE
meta ¢ £ x; meta ¢ £ x,

1 = T2
We use this mechanism extensively to avoid exposing ghost names in specifications.

Our program logic is sound # in the following sense:

WP-ADEQUACY
statewf o V0.0 v —«wpes0{_.True}

safe ([e], 0)

In words, if the user can prove a weakest precondition for e in Iris, then e is safe to
execute, i.e. cannot get suck, in any well-formed state (where some global variables have
been initialized).

Bhttps://gitlab.mpi-sws.org/iris/iris/-/blob/master/iris/base_logic/lib/gen_heap.v
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4.2.7 Proof mode

We mechanized ZooLang and the program logic in the Rocq proof assistant, on top
of Iris [Iris development team, 2025a]. Our mechanization includes tactics # integrating
into the Iris proof mode |[Krebbers et al., 2018| to apply the reasoning rules and supports
Diaframe [Mulder et al., 2022; Mulder and Krebbers, 2023|, enabling proof automation.

4.3 Related work

Non-automated verification. In non-automated verification, the verified program is
translated, manually or in an automated way, into a representation living inside a proof
assistant where users write and prove specifications.

Translating into the native language of the proof assistant, such as Gallina for Rocq,
is challenging as it is hard to faithfully preserve the semantics of the source language,
e.g. non-terminating functions. Monadic translations should support it, but faithfully
encoding all impure behaviors is challenging and tools typically provide a best-effort
translation |Claret, 2024; Spector-Zabusky et al., 2018] that is only approximately sound.

The representation may be embedded, meaning the semantics of the language is for-
malized in the proof assistant. This is the path taken by some recent works [Chajed
et al., 2019; Gondelman et al., 2023; Charguéraud, 2023| harnessing the power of separa-
tion logic. In particular, (1) CEML [Charguéraud, 2023], (2) Osiris [Seassau et al., 2025|
and (3) DRFCaml [Georges et al., 2025] target OCaml.

(1) CFML does not support concurrency and is not based on Iris.

(2) Osiris is based on Iris but does not support concurrency. Its design philosophy
is more perfectionist than pragmatic, especially in its treatment of evaluation order, at
the cost of a complex program logic. The relatively small number of verified examples
suggests that it is not yet ready for practical verification at scale.

(3) DRFCaml is based on Iris and does support concurrency. It is mostly an exten-
sion of HeapLang with features (modalities and stack regions) entirely orthogonal to our
work; in particular, it also assumes a sequentially consistent memory model. The crucial
difference is that it forbids data races on non-atomic locations, which makes it compatible
with OCaml 5 thanks to the DRF property [Dolan et al., 2018] but is too restrictive to
verify legal concurrent programs, including some that we verified.

Semi-automated verification. In semi-automated verification, the verified program
is annotated by the user to guide the verification tool: preconditions, postconditions,
invariants, etc. Given this input, the verification tool generates proof obligations that
are mostly automatically discharged. One may further distinguish two types of semi-
automated systems: foundational and non-foundational.

In non-foundational automated verification, the tool and external solvers it may rely
on are part of the trusted computing base. It is the most common approach and has
been widely applied in the literature [Swamy et al., 2013; Miiller et al., 2017; Jacobs
et al., 2011; Denis et al., 2022; Astrauskas et al., 2022; Filliatre and Paskevich, 2013;
Lattuada et al., 2023; Pulte et al., 2023|, including to OCaml by Cameleer [Pereira and
Ravara, 2021], which uses the Gospel specification language [Charguéraud et al., 2019|
and Why3 [Filliatre and Paskevich, 2013].

In foundational automated verification, proofs are checked by a proof assistant so
the automation does not have to be trusted. To our knowledge, it has been applied to
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C [Sammler et al., 2021] and Rust |Gaher et al., 2024].

Physical equality. There is some literature in proof-assistant research on reflecting
physical equality from the implementation language into the proof assistant, for optimiza-
tion purposes: for example, exposing OCaml’s physical equality as a predicate in Rocq
lets us implement some memoization and sharing techniques in Rocq libraries. How-
ever, axiomatizing physical equality in the proof assistant is difficult and can result in
inconsistencies.

The earlier discussions of this question that we know come from Jourdan’s thesis [Jour-
dan, 2016] (chapter 9), also presented more succintly in [Braibant et al., 2014]. This work
introduces the Jourdan condition: physical equality implies equality of values. Boulmé
[2021] extends the treatment of physical equality in Rocq, integrating it in an “extraction
monad” to control it more safely. There is also a discussion on similar optimizations in
Lean in [Selsam et al., 2020].

The correctness of the axiomatization of physical equality depends on the type of the
values being compared: axiomatizations are typically polymorphic on any type A, but their
correctness depends on the specific A being considered. For example, it is easy to correctly
characterize physical equality on natural numbers and other non-dependent types arising
in Rocq verification projects. One difficulty in HeapLang and ZoolLang is that they are
untyped languages; in particular, their representation of 0 and false have the same type.
However, our remark that physical equality (in OCaml) does not necessarily coincide with
definitional equality (in Rocq) also applies to other Rocq types: our examples with an
existential Any constructor (see Section 4.2.3) can be reproduced with X-types.

4.4 Future work

Relaxed memory model. Currently, the most important limitation of ZooLang is
that it assumes a sequentially consistent memory model, whereas OCaml 5 has a relaxed
memory model (see Section 2.2). As a result, our semantics does not capture all observ-
able behaviors and therefore all correctness results are compromised. This choice has a
pragmatic justification: we wanted to ensure that we could scale up verification of concur-
rent algorithms in the simpler setting of sequential consistency before moving to relaxed
memory.

It should be noted that moving to relaxed memory is much simpler than for other
languages like C because the OCaml 5 memory model is comparatively not very re-
laxed. Indeed, Mével et al. [2020] propose an Iris-based program logic for Multicore
OCaml [Sivaramakrishnan et al., 2020] which Mével and Jourdan [2021] use to verify a
fine-grained concurrent queue; they show that it is possible to adapt specifications and
proofs in non-trivial but relatively straightforward way. This suggests that the transition
is feasible and would not throw away our work; we plan to do it in the future.

Language features. ZooLang currently lacks many features that we also plan to sup-
port in the future: exceptions, algebraic effects [Sivaramakrishnan et al., 2021], modules,
functors, threads'?. Overall, this was not a significant limitation except for Parabs (see
Chapter 10). Algebraic effects have been formalized by de Vilhena and Pottier [2021], who

“nttps://ocaml.org/manual/5.4/api/Thread.html
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propose an Iris-based program logic; accordingly, it should not be difficult to introduce
them in ZoolLang.

Bounded integers. As most Iris languages, ZooLang features unbounded integers,
which are unsound but much more pleasant to reason about than bounded machine in-
tegers. Moreover, as noted by Carbonneaux et al. [2022], programmers often make as-
sumptions about integers that are difficult to formalize. At the very least, introducing
bounded integers would result in a lot of noise. Further investigation is probably needed;
we leave it for future work.
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Chapter 5

Prophecy variables

In 2020, Jung et al. introduced prophecy variables in Iris. Essentially, prophecy vari-
ables — or prophets, as we will call them in this thesis — can be used to predict the future
of the program execution and reason about it. They are key to handle future-dependent
linearization points [Dongol and Derrick, 2014]: linearization points that may or may not
occur at a given location in the code depending on a future observation. We will encounter
several of them in Chapter 9 and Chapter 11.

ZoolLang supports prophets through the Proph and Resolve expressions — as in
HeapLang, the canonical Iris language. In OCaml, four primitives # are recognized by
ocaml2zoo:

e Zoo.proph () is translated to:
Proph;

e Zoo.resolve_with e; ey e3 is translated to:
Resolve ¢ e e3;

e Zoo.resolve_silent e; ey is translated to:
Resolve Skip e; e, where Skip = (fun: <> => ()) O;

e Zoo.resolve e; ey is translated to:
let: "@tmp" := ey in Resolve Skip ¢ "@tmp" ;; "O@tmp".

To reason about prophets in the logic, we build four abstraction layers above the
semantics of Proph and Resolve (given in Section 4.2.5). The first two layers come from
Jung et al. [2020] while the last two are contributions of this thesis.

5.1 Primitive prophet

The first layer consists of primitive prophets #. These prophets are primitive in the
sense that they simply reflect the semantics of Proph and Resolve in the program logic.
The corresponding reasoning rules are given in Figure 5.1.

The assertion model pid prophs represents the exclusive ownership of the prophet with
identifier pid; prophs is the list of prophecies that must still be resolved.

WP-PROPH says that Proph allocates a new prophet with some unknown prophecies to
be resolved. WP-RESOLVE says that Resolve e pid v atomically resolves the next prophecy
of prophet pid: we learn that the prophecies before resolution prophs is non-empty and
its head is the pair (res, v) where res is the evaluation of e.
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PROPHET-MODEL-EXCLUSIVE
model pid prophs, model pid prophs,

False

WP-PROPH
True

Proph ¢ &
pid. 3 prophs. model pid prophs

WP-RESOLVE
atomic e

res. V prophs’.
prophs = (res, v) :: prophs’ —
model pid prophs’ —
D res

to-val e = None model pid prophs wpe €

wp; Resolve ¢ pid v { @ }
Figure 5.1: Reasoning rules for primitive prophets

5.2 Typed prophet

The second layer consists of typed prophets #. They are very similar to primitive
prophets except prophecies are now typed. For convenience, we further distinguish two
kinds of typed prophets: normal and strong. The difference is that normal prophets only
predict the values provided to Resolve while strong prophets also predict the evaluations
of the backing expressions as primitive prophets do. The corresponding reasoning rules
are given in Figure 5.2.

The rules are essentially the same as before. The prophet must provide a type 7
along with two functions of-val and to-val. to-val converts an inhabitant of 7 to a value;
TYPED-PROPHET-RESOLVE-SPEC and TYPED-STRONG-PROPHET-RESOLVE-SPEC rely on
it to enforce that the prophecies are well-typed. of-val attempts to convert a value to 7; it is
used internally. of-val and to-val must be compatible: of-val (to-val proph) = Some proph.

5.3 Wise prophet

The third layer consists of wise prophets #. These prophets remember past prophecies.
The corresponding reasoning rules are given in Figure 5.3.

The exclusive assertion model pid ~ past prophs represents the ownership of the
prophet with identifier pid;  is the logical name of the prophet; past is the list of prophe-
cies resolved so far; prophs is the list of prophecies that must still be resolved.

The persistent assertion full v prophs represents the list of all (resolved or not) prophe-
cies associated to the prophet with name v, as stated by WISE-PROPHET-FULL-VALID.

The persistent assertion v past prophs represents a snapshot of the state of
the prophet with name v at some point in the past. WISE-PROPHET-SNAPSHOT-VALID
allows to relate the current state of model to the past state of

The persistent assertion |b v [b represents a lower bound on the non-resolved prophecies
of the prophet with name ~. In particular, as stated by WISE-PROPHET-LB-VALID, the
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TYPED-PROPHET-MODEL-EXCLUSIVE
model pid prophs, model pid prophs,

False

TYPED-PROPHET-PROPH-SPEC
True

Proph
pid. 3 prophs. model pid prophs

TYPED-PROPHET-RESOLVE-SPEC
atomic e to-val e = None v = prophet .to-val proph
w. Y prophs’.
prophs = proph :: prophs’ —
model pid prophs’ —
D w

wp, Resolve e pid v {@}

model pid prophs wpg €

TYPED-STRONG-PROPHET-RESOLVE-SPEC

atomic ¢
(w. 3 proph. )
(w, v) = prophet.to-val proph
: hs’.
to-val ¢ = None model pid prophs wpg € vV prophs

prophs = proph :: prophs’ —
model pid prophs’ —
\ @ w J

wp, Resolve e pid v {@}

Figure 5.2: Reasoning rules for typed prophets
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persistent (full v prophs) persistent ( v past prophs) persistent (Ib 7y 1b)

WISE-PROPHET-MODEL-EXCLUSIVE
model pid v, past, prophs, model pid o pasty, prophs,
False

WISE-PROPHET-FULL-GET
model pid v past prophs

full v (past 4 prophs)

WISE-PROPHET-FULL-VALID
model pid 7 past prophs, full v prophs,
prophs, = past # prophs,

WISE-PROPHET-FULL-AGREE
full v prophs, full v prophs,,

prophs, = prophs,

WISE-PROPHET-SNAPSHOT-GET
model pid v past prophs

v past prophs

WISE-PROPHET-SNAPSHOT-VALID

WISE-PROPHET-LB-GET
model pid v past, prophs, v pasty prophs,

model pid v past prophs
Ib ~ prophs

3 pasts. past, = pasty 4 pasts * prophs, = pasts # prophs,

WISE-PROPHET-LB-VALID
model pid v past prophs Ib ~ Ib
3 past, past,. past = past, H# past, x b = past, H prophs

WISE-PROPHET-PROPH-SPEC
True

Proph
pid. 3 7 prophs. model pid ~y [| prophs

WISE-PROPHET-RESOLVE-SPEC

atomic e to-val e = None v = prophet.to-val proph
w. Y prophs’.
model pid ~ past prophs Wpg € prophs = proph :: prophs’
€ model pid v (past 4 [proph]) prophs’ —
D w

wpg Resolve e pid v {CD}

WISE-STRONG-PROPHET-RESOLVE-SPEC

atomic e to-val e = None
(w. 3 proph. )
(w, v) = prophet.to-val proph x
!/
model pid v past prophs wpg € Zﬁ;%ihi 'pmph -+ prophs’ — >
model pid v (past + [proph]) prophs’ —
\ ¢ w /

wp; Resolve ¢ pid v { @ }

Figure 5.3: Reasoning rules for wise prophets
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list of currently non-resolved prophecies carried by model is always a suffix of [b.
WISE-PROPHET-RESOLVE-SPEC and WISE-STRONG-PROPHET-RESOLVE-SPEC are the
same as before, except we also update the list of resolved prophecies after resolution.

5.4 Multiplexed prophet

The fourth layer consists of multiplexed prophets #. Essentially, they allow to combine
different prophets, each operating at a fixed index. They were made to handle the case
when a single prophet is used to make independent predictions, as in Section 9.7. The
corresponding reasoning rules are given in Figure 5.4.

The predicates and rules are basically the same as before, except that (1) model now
carries sequences of lists of prophecies — one past and one future per index — and (2)
full, and |b are parameterized with an index.

Importantly, the third argument provided to Resolve in WISE-PROPHETS-RESOLVE-
SPEC and WISE-STRONG-PROPHETS-RESOLVE-SPEC must be a pair of an index and a
prophecy value. Resolution happens only at the given index, meaning the prophecies at
other indices are unchanged.

Note that we could generalize this abstraction to non-integer keys. In other words, we
could replace sequences with functions of type X — 7, where 7 is the prophecy type, and
indices with inhabitants of X. In practice, however, we never needed such generalization.

5.5 Limitation

As noted by Jung et al., prophecy variables suffer from an important limitation:
prophecy resolution is not modular because it requires a physically atomic backing expres-
sion. Most of the time, in concurrent algorithms, this is not a problem because prophecy
resolution is used only with primitive memory operations.

However, in Section 9.4, we encounter the case where the backing expression is logically
atomic, in the sense that it admits an atomic specification, but not physically atomic.
More precisely, the backing expression is an operation on an infinite array that consists in
acquiring a lock and updating the array while holding this lock. Therefore, exposing the
implementation does not help; Resolve cannot be used externally. Yet, it can be used
internally. In other words, it is possible to implement the operation so that it internally
performs prophecy resolution. This leads to a complex specification, as we describe in
Section 6.11.

5.6 Erasure

5.6.1 Erasure in HeapLang

Jung et al. [2020] proved that prophecy variables can be erased in HeapLang, in the
sense that eliminating prophecy-related expressions and values preserves safety. Con-
cretely, erasure proceeds structurally with the following base cases:

ValFun BinderAnon LitPoison
Proj, (Proj, (Tuple [erase e;;erase ey;erase e3)))
LitPoison

erase Proph
erase (Resolve e; ey e3)
erase-literal (LitProph pid)

> [1> [l>
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persistent (full v 7 prophs) persistent ( v i past prophs) persistent (Ib v i 1b)

WISE-PROPHETS-MODEL-EXCLUSIVE
model pid 7, pasts, prophss, model pid 7o pasts, prophss,
False

WISE-PROPHETS-FULL-GET WISE-PROPHETS-FULL-VALID
model pid v pasts prophss model pid v pasts prophss

full v @ prophs
full v i (pasts i+ prophss i)

prophs = pasts i + prophss 1

WISE-PROPHETS-FULL-AGREE
full v i prophs, full v i prophs,

prophs, = prophs,

WISE-PROPHETS-SNAPSHOT-GET
model pid v pasts prophss

v (pasts i) (prophss i)

WISE-PROPHETS-SNAPSHOT-VALID
model pid v pasts prophss v i (pasts i) (prophss i)
3 past’. pasts i = past + past’ * prophs = past’ # prophss 1

WISE-PROPHETS-LB-GET
model pid v pasts prophss

Ib v i (prophss i)

WISE-PROPHETS-LB-VALID
model pid v pasts prophss Ib~ilb
3 pasty past,. pasts i = past, H# pasty * b = past, H prophss 1

WISE-PROPHETS-PROPH-SPEC
True
Proph
pid. 3 v prophss. model pid v (A _.[]) prophss

WISE-PROPHETS-RESOLVE-SPEC
atomic e
to-val e = None v = prophet.to-val proph
w. Y prophs.

prophss © = proph :: prophs —

model pid ~y (alter (- 4 [proph]) i pasts) (prophss [i — prophs]) —
O w

model pid v pasts prophss

ng (&

wp; Resolve e pid (i,v) {® }

WISE-STRONG-PROPHETS-RESOLVE-SPEC

atomic e to-val e = None model pid v pasts prophss
(w. 3 proph. )
(w, v) = prophet.to-val proph x
Y prophs.

Whe € prophss i = proph :: prophs —

model pid ~y (alter (- 4 [proph]) i pasts) (prophss [i — prophs]) —x
ONT

wp; Resolve e pid (i,v) {® }

Figure 5.4: Reasoning rules for multiplexed prophets
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A delicate point is the interaction between prophecy variables and physical equality.
Indeed, erasure is not injective — it makes things “more equal”. Consequently, physical
comparisons that always fail in the original program may succeed in the erased program,
thereby breaking safety.

To cope with this point, HeapLang restricts the semantics of physical equality so that
prophecies (LitProph pid), poison (LitPoison) and functions (ValRecs i 7ec) cannot be
compared to any value, either directly or indirectly (through immutable blocks). This
makes erasure injective and allows proving safety preservation.

5.6.2 FErasure in ZooLang

Unfortunately, we found this restriction to be impractical; for example, in Chap-
ter 8, we need to compare (generative) immutable blocks containing functions. Thus,
in ZooLang, physical equality is not restricted but comes with a special semantics (see
Section 4.2.3). As a result, the problem of erasure injectivity remains, but this time with
respect to value similarity.

For prophecy values, the problem can easily be solved by forbidding the original pro-
gram to use poison. For functional values, it can also be solved by providing no guarantee
for function bodies. For non-generative immutable blocks, there is no problem because the
semantics is very weak. For generative immutable blocks, there really is a problem since
value similarity guarantees that the block fields are equal in Rocq; therefore, injectivity
with respect to similarity requires injectivity with respect to Rocq equality. We envision
two solutions.

Solution 1. A straightforward but somewhat unsatisfactory solution is to introduce a
special construct to erase Resolve expressions. Crucially, as LitPoison, this construct would
be forbidden in the original program. Although superficial, this solution suffices to show
safety preservation for a prophecy-inert program, which is arguably the most important.

Solution 2. Another, more complex solution is to decompose erasure into two steps:
(1) erase generative blocks, replacing them with immutable blocks; (2) erase prophecy
variables normally thanks to injectivity with respect to value similarity. Interestingly,
the first step would also formally justify our high-level semantics by providing a low-level
semantics it translates into. We leave it for future work.
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Chapter 6

Standard data structures

To save users from reinventing the wheel, Zoo comes with a library of verified standard
data structures — more or less a subset of the OCaml standard library. Most of these data
structures' are completely reimplemented in Zoo and axiom-free, including the Array?
module. We claim that the proven specifications are modular and practical. In fact, most
data structures have already been used to verify more complex ones.

In this chapter, we present the most important parts, including those that will be
needed in the following chapters. The full library can be found in the accompanying
mechanization & #.

6.1 List

We provide a verified implementation of (more or less) a subset of Stdlib.List? # #.
Especially, we developed an extensive collection of flexible specifications for iterators
(iter, map, fold_left, fold_right).

6.2 Array

We provide a verified implementation of (more or less) a subset of Stdlib.Array? # #.
Similarly to Stdlib.List, we developed a collection of flexible specifications for iterators,
including atomic specifications.

Remarkably, our formalization features different (fractional) predicates to express the
ownership of either an entire array, a slice or even a circular slice — we used it to verify
algorithms involving circular arrays, e.g. Chase-Lev working-stealing deque [Chase and
Lev, 2005] (see Section 9.7).

IFor practical reasons, to make them completely opaque, we chose to axiomatize a few functions from
the Domain and Random modules. They could trivially be realized in Zoo.

20ur implementation of the Array module is compatible with the standard one. In particular, it uses
the same low-level value representation.

3https://ocaml.org/manual/5.3/api/List.html

“https://ocaml.org/manual/5.3/api/Array.html
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RANDOM-STATE-INT-SPEC

RANDOM-STATE-CREATE-SPEC 0 < ub *
True model ¢
create () int ¢t ub
t. model ¢ n.0<n<ubx*
model ¢

RANDOM-STATE-INT-IN-RANGE-SPEC
b < ub *

model ¢
int_in_range t Ib ub
n. b <n<ubx*
model ¢

Figure 6.1: Random_state: Specification (excerpt)

6.3 Dynamic array

We verified two implementations of a subset of Stdlib.Dynarray® (introduced in
OCaml 5.2): (1) an efficient but unsafe version # # and (2) a less efficient but safe
version M #. We explain these notions in Chapter 12.

6.4 Random generator

We provide an axiomatization of a subset of Std1ib.Random® #/ # and Stdlib.Random.State’ A #.
For instance, the specification of our module Random_state is given in Figure 6.1. The
assertion model ¢ represents the ownership of the pseudorandom number generator ¢; it is
required and returned by the int and int_in_range functions in an imperative fashion.

6.5 Random round

We provide a verified Random_round module #/ # that allows iterating over [0; sz)
in a random order, for a given sz. This device is used internally by the parallel task
scheduler of Chapter 10 to randomly pick a domain to steal from during load balancing.
Its specification is given is Figure 6.2.

The assertion model ¢ sz prevs represents the ownership of ¢, where sz is the size of
the iterated interval and prevs the list of already visited elements. The main operation
is next, which randomly chooses a non-visited element and adds it to prevs (RANDOM-
ROUND-NEXT-SPEC). At any time, iteration can be restarted using reset (RANDOM-
ROUND-RESET-SPEC).

We also provide a simpler specification where model only maintains the number of
non-visited elements; it is the one used in Chapter 10.

Shttps://ocaml.org/manual/5.3/api/Dynarray.html
Shttps://ocaml.org/manual/5.3/api/Random.html
"https://ocaml.org/manual/5.3/api/Random.State.html
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RANDOM-ROUND-NEXT-SPEC
length prevs # sz x

RANDOM-ROUND-CREATE-SPEC model ¢ sz prevs

0< sz
crez;te sz pet !
= n.0<n<szx
t. model ¢ sz || n & prevs x

model t sz (prevs 4 [n])

RANDOM-ROUND-RESET-SPEC
model t sz prevs

reset ¢
(). model t sz |]

Figure 6.2: Random_round: Specification

Although we did not need it, the specification we presented could be improved. In
particular, it should be possible to determine the order in which the elements are chosen
in advance using a prophecy variable (see Chapter 5). This order would materialize as an
additional parameter of model and be consumed into prevs during iteration.

6.6 Domain

We reimplemented and verified a subset of Stdlib.Domain® A # — except for a few

minor functions that we axiomatized. Its specification is given in Figure 6.3.

The assertion model ¢ ¥ represents the ownership of domain ¢, or more accurately the
right to call join to obtain ¥ v for some v (DOMAIN-JOIN-SPEC). As join consumes
model, it can be called only once. This restriction is justified by the fact that a child
domain is typically joined only by its parent domain in a fork-join fashion — this is
the case, for example, in parallel schedulers. Alternatively, we could have used the same
mechanism as in Section 6.10 to separate domain termination and output, thereby allowing
calling join multiple times.

The rest of the specification deals with domain-local storage? (DLS). This part is
interesting because DLS keys are generated dynamically.

The persistent assertion key key U represents the knowledge that key is a valid DLS key
whose initializer produces values satisfying W. It can be obtained by calling local_new
(DOMAIN-LOCAL-NEW-SPEC).

local-init tid key asserts that the DLS key key of domain tid has been logically ini-
tialized — but not necessarily physically initialized. It can be obtained through the rule
DOMAIN-LOCAL-GET-KEY.

The assertion tid keys represents the ownership of the local storage attached
to domain tid. keys is the set of logically initialized DLS keys; when a new domain is
spawned, it is empty (DOMAIN-SPAWN-SPEC).

The assertion local-pointsto tid key q v represents the fractional ownership of the
DLS key key of domain tid and the knowledge that it currently contains v. It can be

8https://ocaml.org/manual/5.3/api/Domain.html
9https://ocaml.org/manual/5.3/api/Domain.DLS.html
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persistent (key key U)

DOMAIN-LOCAL-GET-KEY
key ¢ keys local tid keys

key key W

DOMAIN-LOCAL-POINTSTO-AGREE
local-pointsto tid key ¢ v

local-pointsto tid key qo vy

B local tid (keys W {key})  local-init tid key

V1 = U

DOMAIN-LOCAL-POINTSTO-EXCLUSIVE
local-pointsto tid key 1 v

local-pointsto tid key qo vo

False

DOMAIN-SPAWN-SPEC

DOMAIN-JOIN-SPEC

V tid. local tid 0 = wp fn O § tid { ¥} model ¢ ¥
spawn fn joint
t. model t ¥ v

DOMAIN-LOCAL-NEW-SPEC
{True} fn O {V} %
3 X. key key X
key€keys
local_new fn
key. key key WU
key ¢ keys

DOMAIN-LOCAL-GET-SPEC-POINTSTO
local tid keys =

local-pointsto tid key q v
local_get key § tid
T€S. res = v *
local tid keys =
local-pointsto tid key q v

DOMAIN-LOCAL-SET-SPEC-INIT
local tid keys %

key key W x
local-init tid key
local_set key v § tid
O. local tid keys =
local-pointsto tid key 1 v

DOMAIN-LOCAL-GET-SPEC-INIT
local tid keys *

key key W x
local-init tid key
local_get key § tid
v. local tid keys *
local-pointsto tid key 1 v *
U v

DOMAIN-LOCAL-GET-SPEC-POINTSTOPRED
local tid keys %

local-pointstopred tid key W

local_get key § tid

v. local tid keys *
local-pointsto tid key 1 v *
v

DOMAIN-LOCAL-SET-SPEC-POINTSTO
local tid keys *

local-pointsto tid key 1 w
local_set key v § tid
O. local tid keys =
local-pointsto tid key 1 v

DOMAIN-LOCAL-SET-SPEC-POINTSTOPRED

local tid keys =

local-pointstopred tid key W

local_set key v § tid

O. local tid keys =

local-pointsto tid key 1 v

Figure 6.3: Domain: Specification (excerpt)
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used to read (DOMAIN-LOCAL-GET-SPEC-POINTSTO) and write (DOMAIN-LOCAL-SET-
SPEC-POINTSTO) to key similarly to the points-to predicate for normal storage. It is
obtained after reading (DOMAIN-LOCAL-GET-SPEC-INIT) or writing to (DOMAIN-LOCAL-
SET-SPEC-INIT) key for the first time, which requires local-init. In summary, the user has
to first logically initialize a key and then access it once before obtaining the corresponding
local-pointsto and thereby fine-grained control over the key.

In practice, this two-step procedure is inconvenient because, e.g., a function that ac-
cesses a DLS key may be called in a context where the status of the key is not determined.
In other words, such a function should expect either local-init or local-pointsto. To address
this issue, we define the local-pointstopred predicate:

local-pointstopred tid key ¥ £
V local-init tid key * key key ¥
3 v. local-pointsto tid key 1 v« ¥ v

Essentially, local-pointstopred tid key W represents the full ownership of the DLS key key
of domain #id and the knowledge that it contains a value satisfying W. Alternatively,
local-pointstopred may be seen as a degenerated full local-pointsto. In terms of speci-
fications, it behaves exactly like local-init (DOMAIN-LOCAL-GET-SPEC-POINTSTOPRED,
DOMAIN—LOCAL-SET-SPEC-POINTSTOPRED).

So far, we kept quiet about one major limitation of our specification: the freshness
condition of DOMAIN-LOCAL-GET-KEY. Indeed, this rule requires the given key to be
different from all the already initialized keys. DOMAIN-LOCAL-NEW-SPEC provides a
basic way to differentiate keys: when a key is created, we learn that it is different from
any given preexisting key. Crucially, this is the only way to do so, which significantly
limits the modularity of the approach.

Remarkably, though, this approach is flexible enough to handle interesting cases. For
example, consider the parallel LU decomposition! implemented in Domainslib. The
scheduler, which may internally use DLS, is given tasks that rely on a global DLS key.
The verification could proceed as follows: (0) we assume that no DLS key has been
logically initialized in the current domain, materialized by tid 0; (1) the global key
is created, producing key; (2) when the scheduler is created, it first allocates its own
DLS keys that are proven to be different from the global key; (3) then, for each spawned
domain, the scheduler logically initializes all the keys — which is possible because we
know they are distinct —, reserves the obtained local-pointstopred of the global key for
the tasks and keeps the rest.

6.7 Mutex

We provide a verified implementation of Stdlib.Mutex!! # #. The specification,
given in Figure 6.4, is mostly standard.

The persistent assertion inv t P represents the knowledge that ¢ is a valid mutex
protecting the resource P. It is returned by create (MUTEX-CREATE-SPEC) and required
by all operations.

Onttps://github.com/ocaml-multicore/domainslib/blob/main/test/LU_decomposition_
multicore.ml
"Uhttps://ocaml.org/manual/5.3/api/Mutex.html
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persistent (inv ¢ P)

MUTEX-INIT-TO-INV MUTEX-LOCKED-EXCLUSIVE
init ¢ > P locked ¢ locked ¢
Einvt P False
MUTEX-LOCK-SPEC
MUTEX-CREATE-SPEC MUTEX-CREATE-SPEC-INIT .
invt P
P True
_ _ lock t
create () create () O Tocked £ =
t.invt P t.initt '
P
MUTEX-UNLOCK-SPEC
invt P x MUTEX-SYNCHRONIZE-SPEC
locked t * invt P
P synchronize ¢
unlock t QO). True
O). True
MUTEX-PROTECT-SPEC
invt P x
locked t = P —
wp fn () {v. locked t x P x W v}

protect t fn
Y

Figure 6.4: Mutex: Specification
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The assertion init ¢ represents the ownership of an uninitialized mutex t, i.e. a mutex
whose protected resource is not yet determined. It is also returned by create (MUTEX-
CREATE-SPEC-INIT) and can be converted to inv through MUTEX-INIT-TO-INV. As a
result, it allows delayed initialization. This is needed when the protected resource depends
on resources available only after the mutex creation, e.g. in our implementation of infinite
arrays M # (see Section 6.11).

The exclusive assertion locked ¢ represents the temporary acquisition of the mutex
by the current domain. It is returned by lock (MUTEX-LOCK-SPEC) — marking the
beginning of the critical section — and required by unlock (MUTEX-UNLOCK-SPEC) —
marking the end.

The synchronize operation simply locks and unlocks the mutex, thereby performing
synchronization (see Section 2.2). In the sequentially consistent memory model that
we adopted, it is basically useless and its specification (MUTEX-SYNCHRONIZE-SPEC) is
trivial. In a relaxed memory model, however, the specification should be expressive enough
to support transferring memory views.

6.8 Semaphore

We provide a verified implementation of Stdlib.Semaphore!? # #, a generalization

of Stdlib.Mutex allowing more than one domain in the critical section. Its specification
is similar.

6.9 Condition

We provide a verified implementation of Stdlib.Condition!® # #, i.e. condition

variables. Essentially, a condition variable allows blocking a domain until someone sends
a notification or a spurious wakeup occurs. The specification is given in Figure 6.5.

The persistent assertion inv t represents the knowledge that t is a valid condition vari-
able. It is returned by create (CONDITION-CREATE-SPEC) and required by all operations.

notify (CONDITION-NOTIFY-SPEC) and notify_all (CONDITION-NOTIFY-ALL-SPEC)
send a notification to respectively one and all waiting domains, if any.

A domain can wait for a notification using wait ¢ mtz while holding the mutex mitx
(CONDITION-WAIT-SPEC); after the call, mtz is held.

wait_until ¢t mtx pred works similarly but also waits until the predicate pred returns
true (CONDITION-WAIT-UNTIL-SPEC). It is a higher-order operation; the precondition
requires the ability to call pred multiple times while holding mtz. For flexibility, the
specification is parameterized with a predicate ¥; ¥ false represents the resources needed
and maintained by pred in addition to those protected by mtz; W true represents the final
resources, obtained when pred returns true.

6.10 Write-once variable

We provide three verified versions of concurrent write-once variables — also known
as iars — which are typically used to implement futures/promises. Basically, an ivar

2https://ocaml.org/manual/5.3/api/Semaphore.Counting.html
3https://ocaml.org/manual/5.3/api/Condition.html
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persistent (inv t)

CONDITION-CREATE-SPEC CONDITION-NOTIFY-SPEC CONDITION-NOTIFY-ALL-SPEC
True invt invt
create () notify ¢ notify_all ¢
t.invt Q). True Q0. True

CONDITION-WAIT-UNTIL-SPEC
inv t %

mutex.inv miz P %
mutex.locked mtz *

CONDITION-WAIT-SPEC P x
inv t * U false *
mutex.inv mtz P * mutex.locked mtzr *
mutex.locked mix * P x
P U false
wait t mtx pred ()
(). mutex.locked mtz * b. mutex.locked mtz *
P (if b then True else P) x

v b

wait_until ¢ mix pred

(). mutex.locked mitx *
U true

Figure 6.5: Condition: Specification (excerpt)
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persistent (inv ¢t U = Q) persistent (result ¢ v)

IVAR-CONSUMER-DIVIDE

invt ¥ =
IVAR-PRODUCER-EXCLUSIVE consumer ¢ X I[VAR-RESULT-AGREE
t VU.XU—**XU result ¢ v
t XeXs result ¢ vy
False =3 >l< consumer t X v = U
XeXs
IVAR-INV-RESULT-CONSUMER
IVAR-PRODUCER-RESULT IVAR-INV-RESULT invi W= Q
t invt U =QQ result t v
result t v result £ v consumer t X
False ErOZ v 22X v
IVAR-TRY-GET-SPEC
invt U =QQ
IVAR-CREATE-SPEC try_get t IVAR-TRY-GET-SPEC-RESULT
True 0. match o with invt U= Qx
create () | None = result t v
t.invt W= Q% True try_get t
t * | Some v = res. res = Some v *
consumer t W £2 % £2
result t v
end
IVAR-WAIT-SPEC
VW E Qo IVAR-SET-SPEC
- invt U= Qx
> Q t waiter ‘%
[VAR-GET-SPEC wait ¢ waiter S
invt WU = x 0. match o with SOE 0
result ¢ v | None = -
sett v
get t True .
res. 3 waiters.
res. res = v * | Some v = : .
o 94 res = list.to-val waiters *
result ¢t v * result ¢ v
Q t waiter * Q t waiter
end waiter cwaiters

Figure 6.6: Ivar: Specification (excerpt)
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represents a shared deferred value; it is initially undetermined and can be determined only
once. Although the three versions are close, they offer slightly different functionalities.

The first version # # is the simplest. It is used in our implementation of Std1ib.Domain
(see Section 6.6). It supports basic operations: testing whether an ivar has been deter-
mined (is_set), querying the value (try_get) and setting the value (set). It does not
feature any waiting mechanism. Its simplicity allows for an efficient implementation —
essentially, an atomic reference.

The second version # # features a blocking waiting mechanism (get). Internally, the
implementation relies on a non-atomic reference coupled with a mutex and a condition
variable.

For the sake of performance, the test and query operations does not synchronize
through the mutex, which involves a data race with the writer. In the sequentially con-
sistent memory model that we adopted, this is not a problem. In the relaxed memory
model of OCaml 5 (see Section 2.2), data races do not trigger undefined behavior, but
there is still the problem of memory synchronization: if a domain reads the value with-
out synchronizing with the writer, this domain does not necessarily see all the updates
performed by the writer.

To make the specification somewhat correct in both memory models, we introduced
a special assertion synchronized ¢ attesting that the current domain “synchronized” with
ivar ¢; in our sequentially consistent memory model, this assertion is trivial.

The third version # # features a non-blocking waiting mechanism (wait). It is used
to implement futures in Chapter 10. Its specification is given in Figure 6.6.

The persistent assertion inv ¢t ¥ = €) represents the knowledge that ¢ is a valid ivar
such that: (1) W is the non-persistent output predicate satisfied by the produced value;
(2) = is the persistent output predicate satisfied by the produced value; (3) €2 is the waiter
predicate satisfied by the waiters.

The persistent assertion result £ v represents the knowledge that ivar ¢ has been deter-
mined to value v. One can exploit this knowledge to read the value by calling try_get
(IVAR-TRY-GET-SPEC-RESULT) or get (IVAR-IVAR-GET-SPEC). Using IVAR-INV-RESULT,
it can also be combined with inv to obtain the persistent output predicate.

The exclusive assertion t represents the right to determine ivar ¢ (IVAR-SET-
SPEC). Doing so requires to give the two output predicates and yields a list of waiters
satisfying the waiter predicate. These waiters correspond to those submitted by wait
before the ivar was determined; afterwards, no more waiters can be added.

The assertion consumer t X represents the right to consume X once ivar ¢ has been
determined. Indeed, using IVAR-INV-RESULT-CONSUMER, it can be combined with inv
and result to obtain X. When ¢ is created, this assertion is produced with the full non-
persistent predicate (IVAR-CREATE-SPEC); then, it can be divided into several parts (IVAR-
CONSUMER-DIVIDE).

One notable aspect of this specification is that determination of the ivar — as indicated
by result— is separated from the division of the output predicates — as achieved by
consumer.

One slight drawback is the presence of later modalities (see Section 3.6) in IVAR-INV-
RESULT and IVAR-INV-RESULT-CONSUMER. This is due to a well-known restriction on
Iris’s higher-order ghost state [Jung et al., 2018b]: occurrences of iProp must be guarded.
To easily get rid of these later modalities, most operations emit later credits [Spies et al.,
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2022|, which allows logical elimination — as opposed to physical elimination through
program steps:

£1 > P
B P

6.11 Infinite array

We provide a verified Inf_array module #/ # implementing infinite arrays. We use it
in Section 9.4 and Section 9.7 to simplify complex data structures, especially to abstract
away from the handling of finite arrays, and focus on the core aspects. Internally, it
consists of a finite array protected by a mutex; all operations acquire the mutex. Its
specification is given in Figure 6.7.

The persistent assertion inv ¢ represents the knowledge that ¢ is a valid infinite array.
It is returned by create (INF-ARRAY-CREATE-SPEC) and required by all operations.

The assertion model ¢ vs represents the ownership of ¢ and the knowledge that ¢
contains vs, where vs is a sequence of values. When the array is created, vs is initialized
to A . default, where default is provided by the user (INF-ARRAY-CREATE-SPEC).

The assertion model’ ¢ wvs; vs, is an alternative to model that is sometimes more
convenient — including in Section 9.7. It represents the ownership of ¢t and the knowledge
that it contains wvs; + vs,, where vs; is a list and wvs, a sequence of values. It can be
obtained from model using INF-ARRAY-MODEL-TO-MODEL’.

To access array cells individually, the module provides the same operations as Stdlib.Atomic
(see Section 2.3.2.1): get, set, xchg, cas and faa. We provide atomic specifications
(see Section 3.7) for these operations (INF-ARRAY-GET-SPEC, INF-ARRAY-SET-SPEC, INF-
ARRAY-XCHG-SPEC). For example, INF-ARRAY-XCHG-SPEC states that, given a valid
array t, xchg t ¢+ v atomically writes v to the i-th cell of ¢ and returns the former value.

14

In Section 5.5, we mentioned an important limitation of prophets: prophecy resolution
requires a physically atomic expression. In particular, using Resolve (xchgt i v) pid Vresomwe
to resolve pid does not work because xchg ¢ 7 v is not physically atomic; it is only logically
atomic. In Section 9.4, though, we will need to perform prophecy resolution during xchg.

We propose an expedient: internal prophecy resolution. Concretely, we provide alter-
native versions of xchg and cas, xchg_resolve and cas_resolve, that internally resolve
a given prophet. We designed their specifications with two constraints in mind, imposed
by our use case: (1) the actual resolution should be left to the user, as it depends on the
nature of the prophet; (2) it should be possible to access invariants during resolution.

For example, the specification of xchg_resolve is INF-FARRAY-XCHG-RESOLVE-SPEC.
The third premise says that, atomically, we must be able to: (1) access model; (2) given
back the updated model, resolve pid against an arbitrary logically atomic expression; (3)
prove the postcondition ®. Crucially, as in the definition of atomic specifications (see
Section 3.7), ® is chosen by the user; the only way to prove the conclusion is to consume
the premise at some point. This premise could be generalized to match the expressivity
of atomic updates (see Section 3.7), especially the retry loop.

Ynttps://ocaml.org/manual/5.3/api/Atomic.html
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persistent (inv t)

INF-ARRAY-MODEL-TO-MODEL’
Vi v.vs[i] =Some v — vs i = v
model ¢ vs

model’ t vs; (Ai.vs (length vs; + 7))

INF-ARRAY-GET-SPEC’

INF-ARRAY-GET-SPEC e o Tl
vs; vs,. model’ t vs; vs,

INF-ARRAY-CREATE-SPEC 0<7ix .
. get t1
True inv t L
create default vs. model t vs oo model fUn WSy ____.
. . res. match vs; [i] with
t.inv ¢ get i1 | None =
model t (A . default) model ¢ vs .
- S oo res = vs, (i — length wvs;)
res. res = vs i
| Some v =
res = v
end
INF-ARRAY-SET-SPEC’
0<i=x
INF-ARRAY-SET-SPEC v
0<e*x e del' tuss vs. T
- us vs,. model' t vsy vs,
s model £ o5 set £ v
‘set i if decide (i < length vs;) then
. model’ ¢ (vs; [i — v]) vs
model ¢ (vs [i — v]) (vsi 1) vs:
***** O True else
' model’ ¢t vs; (vs, [i — length vs; — v])
(). True
INF-ARRAY-XCHG-SPEC
0<1ix
inv ¢
vs. model t vs
xchgti v

model ¢ (vs [i — v])

res. res = vUS 1

INF-ARRAY-XCHG-RESOLVE-SPEC
TFES
3 vs. model ¢ vs *
0<1 inv ¢ VeelS ()
model ¢ (vs [i — v]) =
wpg Resolve e pid Unesome { . 5ET O (vs 1) }
wp xchg_resolve t ¢ v pid Upesolve { P }

Figure 6.7: Inf_array: Specification (excerpt)
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6.12 Future work

Our standard library currently features basic imperative data structures: array, dy-
namic array, stack, queue, double-ended queue. In the future, we would like to verify more
complex data structures, striving for a complete cover of the OCaml standard library. In
particular, it would be interesting to integrate the verified hash table of Pottier [2017].
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Chapter 7

Persistent data structures

In this chapter, we use Zoo to verify persistent data structures.

Definition. A data structure is said to be persistent when any update operation pre-
serves the previous version of the data structure. There are many ways to implement
these data structures and make them efficient — see, for instance, the lectures of Xavier
Leroy at Collége de France!. Purely functional implementations are fully immutable; they
typically rely on sharing substructures between versions. Imperative implementations rely
on mutable state under the hood, reshaping and rebalancing the underlying structure that
versions refer to.

Use cases. Persistent data structures are typically used in contexts where “going back
to a previous version” is a desired functionality: version control systems, saves in games,
backtracking algorithms, dynamic bindings [Baker, 1978]|.

7.1 Purely functional data structures

We verified two basic functional data structures: persistent stacks # # and persistent
queues M #. For example, the specification of persistent queues is given in Figure 7.1.
All versions are persistent in the Iris sense and update operations (push and pop) return
new, independent versions.

Currently, verification of functional programs relies on the regular ZoolLang trans-
lation, i.e. on a deeply embedded representation. However, we found this approach is
cumbersome. In the future, it would be desirable to be able to verify them directly in
Rocq, through a translation to Gallina. Similarly to Hacspec [Haselwarter et al., 2024],
this new translation would come with a generated proof of equivalence with the ZooLang
representation.

7.2 Persistent array

Persistent arrays can be naively implemented by copying imperative arrays. However,
this is a performance disaster when the number of versions is large. We verified an efficient,
imperative implementation # # based on the idea of Baker [1991], that we discovered
through Conchon and Filliatre [2008]. It is a good example of how a seemingly persistent

'https://xavierleroy.org/CdF/2022-2023/
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persistent (model ¢ vs)

PQUEUE-IS-EMPTY-SPEC PQUEUE-PUSH-SPEC
PQUEUE-MODEL-NIL model ¢ vs model ¢ vs
model empty |] is_empty t push ¢ v
res. res = decide (vs = []) t'. model ¢ (vs 4 [v])

PQUEUE-POP-SPEC
model ¢ vs
popt
0. match o with

| None =
vs = ||
| Some p =
Jovwvs't.
vs = v 1 vs *
p=(v,t) *
model ¢ vs’
end

Figure 7.1: Pqueue: Specification

interface can hide a mutable world. In Section 7.3 and Section 7.4, we reshape and develop
this implementation.

7.2.1 Specification

The specifications is given in Figure 7.2.

The persistent assertion model ¢ v vs represents the knowledge that ¢ is a valid version
containing values vs. < is a logical identifier that can be interpreted as the underlying
mutable state shared by the different versions.

The exclusive assertion inv 7 7 represents the ownership of the mutable state attached
to v. It is required and returned by all operations, allowing them to internally access and
modify the state. 7 is a persistent predicate over values that represents the type of the
elements.

make equal sz v creates a new state identified by v along with an initial version ¢
(PARRAY-1-MAKE-SPEC) initialized with v. The user must provide a type 7 and an equal-
ity function equal — typically, physical or structural equality — satisfying equal-model 7,
which is defined as follows:

equal-model 7 equal £ {7 v * T w } equal v; v {b.if b then v; = v, else True }

This function is used to short-cut the set operation: in the case where the value to write
is equal to the current value (at a given index in the input version) according to equal,
set simply returns the input version. equal-model allows the operations to call equal as
many times as they wish, but only on values in type 7; when it returns true, the compared
values must be equal in Rocq.
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persistent (model ¢ 7 vs)

PARRAY-1-INV-EXCLUSIVE

inv 7y Inv 7 vy
False
1 1 PARRAY-1-SET-SPEC
PARRAY-1-MAKE-SPEC PARRAY-1-GET-SPEC 0 < i < length vs *
equal-model 7 equal * vs [i] = Some v * )
. inv T 7y %
T inv T 7y %
model ¢ v vs x
make equal sz v model ¢t v vs o
t. 3. et ti .
. 7 & setttv
inv T 7y % res. res = v * —
. . t.invTyx*
model ¢ v (replicate sz v) inv T 7y

model ¢ v (vs [i — v])
Figure 7.2: Parray_1: Specification

get t i reads the value at index i in version ¢ (PARRAY-1-GET-SPEC). set ¢ ¢ v returns
a version — it may be the same — with the same elements as ¢ except v has been written
at index .

7.2.2 Implementation

The idea of Baker, quoting Conchon and Filliatre [2008], is “to use an imperative array
for the newest version of the persistent array and indirections for old versions”. Let us
explain this in detail.

Concretely, the implementation relies on the following OCaml types:

type 'a descr =
| Root of
{ equal: 'a -> 'a -> bool;
data: 'a array;
}
| Diff of
{ index: int;
value: 'a;
parent: 'a t;
}
and 'a t =
'a descr ref

A version ('a t) is areference to an internal descriptor ('a descr), which is either marked
as the Root node or a Diff node. As suggested by these terms, the versions form a tree
in memory, called the version tree. The Root version — there is only one such version
— carries the equality function provided by the user along with an imperative array that
contains the values associated to the version via model. A Diff version ¢ carries an index
i, a value v and a parent version t' such that the values of ¢ is the values of ¢ where
i has been set to v; in other words, to restore ¢ from t', it suffices to apply the patch
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let a = make equal sz v, in
let b = set a 7 v, in
let ¢ = set b7 v, in

o
~— —

NN N N S
o,
N

let _ = get b ¢ in
let d = set b ¢ vy in e)
let _ = get a i in f)

Figure 7.3: Parray_1: Version trees

t — v. This structure allows to restore the values of any version of the tree by applying
the patches along the path from the Root version to the target version in that order; this
operation is called rerooting.

For example, consider the program of Figure 7.3, which creates a persistent array and
performs multiple get and set at the same index ¢ — for simplicity. Let us describe what
happens in this program in terms of the version tree. (a) We create a new version tree
with only one version a initialized with v,. (b) We create a new version b which becomes
the new Root while a becomes a Diff carrying i — v,. (c) Similarly, we create a new
version c. (d) We reroot to b, reversing the edge between ¢ and b. (e) We create a new
version d. (f) We reroot to a, reversing the edges between d and b and between b and a.

7.2.3 Ghost state

The definition of the predicates inv and model is given in Figure 7.5. We describe it
bit by bit.

nodes theory (Figure 7.4). This theory allows constructing a monotonic mapping
that associates to a version its list of elements.

The assertion nodes-auth v nodes represents the ownership of the full mapping nodes.
It is stored in inv.

The persistent assertion nodes-elem v node vs represents the knowledge that node has
values vs (NODES-ELEM-LOOKUP). model is directly defined on top of it (¢ is a value while
node is a memory location).

Diff version. The assertion node-model v node vs represents the ownership of the
Diff node node with values vs. Its main function is to relate node to its parent using the
property stated in Section 7.2.2. It refers to the values of the parent through nodes-elem.
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NODES-ELEM-LOOKUP
nodes-auth v nodes nodes-elem ~ node v

nodes [node] = Some v

NODES-ELEM-AGREE
nodes-elem v nodes vs; nodes-elem ~ nodes vsy

VS1 = VS9

NODES-INSERT
nodes [node] = None nodes-auth v nodes

E nodes-auth  (nodes [node — vs]) * nodes-elem v node vs

Figure 7.4: Parray_1: nodes theory

node-model v node vs £ model ¢t v vs £
d4 v node’ vs'. 3 node.
node — ‘Diff (i,v,node’) * t = node *
T U % nodes-elem ~ node vs

nodes-elem ~ node’ vs’ x
length vs = .size *

1 < 7y.size x

vs = vs' [i — v]

invy T2
3 root Vs, nodes.
equal-model ~.equal x*
root — ‘Root (7y.equal,~y.data) x
array.model ~y.data 1 vs,,0; *
nodes-elem v 700t VS50 *
lenth v8 40 = y.size *

(>|< T v) x
(NS US root

nodes-auth v nodes *

<>l< node — vs € delete root nodes node-model v node US)

Figure 7.5: Parray_1: Predicates definition
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Version graph. In inv, all the nodes are gathered using an iterated separating conjunc-
tion. One striking thing is the fact that there is clearly a graph of nodes but no notion of
tree. Indeed, we did not formalize the tree property because it is not needed to prove the
specification. However, this also means termination is not straightforward — but our logic
only guarantees partial correction anyway. Note that we do formalize the tree property
in Section 7.4.4.

7.3 Snapshottable array

A more general way for a data structure to support persistency is to make it snap-
shottable. An imperative data structure is snapshottable if it possible to take and restore
snapshots of its state. Contrary to a functional interface where every version is persistent
and updates generate new versions, the user explicitly chooses which versions are persis-
tent by taking snapshots and updates modify the current state. One may easily construct
a persistent variant of a snapshottable data structure by systematically taking a snapshot
after an update.

We verified a snapshottable version of the persistent arrays of Section 7.2 A/ . We
could have presented this version first and deduced a persistent variant through the canon-
ical construction mentioned above, but the resulting persistent implementation would be
suboptimal and we wanted to explain the idea of Baker in a simple and familiar setting.

In Section 7.4, we will see that the snapshottable interface enables an interesting
optimization. It also has the advantage of featuring a shared object — the array itself,
to which snapshots refer —, which allows centralizing the resources, including the user-
provided equality function and the underlying imperative array that previously had to be
transported during rerooting.

7.3.1 Specification

The specification is given in Figure 7.6.

The exclusive assertion model 7 ¢t vs represents the ownership of the array and the
knowledge that it currently contains values vs. It is returned by make (PARRAY-2-MAKE-
SPEC) and used by all operations in an imperative fashion, including get (PARRAY-2-
GET-SPEC) and set (PARRAY-2-SET-SPEC).

The persistent assertion s t vs represents the knowledge that s is a valid
snapshot of array ¢ at version vws. It can be obtained through capture (PARRAY-2-
CAPTURE-SPEC) and used to restore vs through restore (PARRAY-2-RESTORE-SPEC).

7.3.2 Implementation

The implementation relies on the exact same technique that we presented in Sec-
tion 7.2.2. The get and set operations no longer need to reroot, as they directly access
the current version, which is always the root of the version tree. capture simply stores
the current root and restore reroots to the captured version.

7.3.3 Ghost state

The ghost state is very similar to that of Section 7.2.3: model holds the same resources
as parray-1l.inv, the same as parray-1.model. We refer to the mechanization # for

83


https://github.com/clef-men/zoo/tree/phd/lib/zoo_persistent/parray_2.ml
https://github.com/clef-men/zoo/tree/phd/theories/zoo_persistent/parray_2.v
https://github.com/clef-men/zoo/tree/phd/theories/zoo_persistent/parray_2.v

persistent ( st vs)

PARRAY-2-MODEL-EXCLUSIVE

model 7 ¢ vs; model 7 ¢ vs;
False
PARRAY-2-MAKE-SPEC PARRAY-2-GET-SPEC PARRAY-2-SET-SPEC
o ) vs [i] = Some v * 0 <i < length vs *
equal-model 7 equal *
model 7 t vs model 7 t vs *
T :
et t1 T U
make equal sz v & .
- Tes. res = v * setti1 v
t. model 7 t (replicate sz v) .
model 7 ¢ vs ). model 7t (vs [i — v])
PARRAY-2-CAPTURE-SPEC PARRAY-2-RESTORE-SPEC
model 7 ¢t vs model 7 t vs *
capture ¢ st wvs'
s. model 7t vs * restoret s
st s (). model 7 t vs’

Figure 7.6: Parray_2: Specification

details.

7.4 Snapshottable store

We verified an implementation of snapshottable heterogeneous stores # # developed
by Basile Clément and Gabriel Scherer [Allain et al., 2024], available through the Store?
library.

A heterogeneous store is a bag of mutable references not necessarily of the same
type. This abstraction can be used to easily add snapshots to complex imperative data
structures — we show one example in Section 7.5. They were motivated by applications
in backtracking algorithms, including in the Inferno® library and the Alt-Ergo? SMT
solver.

The implementation is based on the idea of Baker enhanced with an important op-
timization that we present in Section 7.4.2: record elision. The resulting algorithm is
fairly short but subtle. As a matter of fact, during the development, Clément and Scherer
heavily relied on the Monolith |[Pottier, 2021]| fuzz-testing library. When they reached a
fixed point, they found that it was quite difficult to convince oneself of its correctness,
and so they suggested we verify it.

7.4.1 Specification

The specification is given on Figure 7.7. It is very similar to that of snapshottable
arrays presented in Section 7.3.1, except lists are naturally generalized to maps. Further-

’https://gitlab.com/basile.clement/store/
3https://gitlab.inria.fr/fpottier/inferno
‘https://alt-ergo.ocamlpro.com/
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persistent ( sto)

PSTORE-MODEL-EXCLUSIVE
model ¢ o, model ¢t o9

False

PSTORE-REF-SPEC PSTORE-GET-SPEC
_ _ e o|r] = Some v *
PSTORE-CREATE-SPEC odel £ o [r]

True model t o
_ ref t v
create () gettr
r. o [r] = None x

t. model t () res. res = v %
model ¢ (o [r — v])
model ¢ o
PSTORE-SET-SPEC PSTORE-CAPTURE-SPEC PSTORE-RESTORE-SPEC
r € dom o * model t o model t o *
model ¢ o capture ¢ sto
settrw s. model t o restoret s

(). model t (o [r — v]) sto (). model t ¢

Figure 7.7: Pstore: Specification
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(a)

Figure 7.8: Pstore: Version tree and its corresponding subtree of captured nodes (squares
represent captured nodes, circles non-captured nodes)

more, contrary to arrays, the domain of the store is unbounded; new references can be
created using the ref operation (PSTORE-REF-SPEC).

7.4.2 Implementation

Snapshottable stores can be implemented by simply adapting the algorithm of Sec-
tion 7.3, replacing the imperative array by references. As it is, this implementation suffers
from one significant overhead compared to plain references: while the get operation is fast
(one memory read), the set operation incurs additional costs (in the slow path) due to the
systematic creation of a new node in the version tree. Basile Clément and Gabriel Scherer
designed an optimization called record elision that makes set much faster (roughly as fast
as for plain references) in the common case where the capture and restore operations
are infrequent.

Tree of captured nodes. To explain how record elision works, we first need to take
a closer look at the structure of the version tree. In the presence of snapshots, we can

distinguish captured nodes and non-captured nodes. Captured nodes form a subtree whose
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(d)

Figure 7.9: Pstore: Historic trees corresponding to the version trees of Figure 7.3

edges are chains of non-captured nodes. For example, the version tree of Figure 7.8a
corresponds to the subtree of Figure 7.8b. The root of the subtree coincides with the last
captured node; we call it the base node.

Remarkably, this structure “forgets” about useless non-captured nodes like G that
represent aborted paths — incidentally, these nodes are not superficially kept alive and
can therefore be garbage-collected.

We track separately the final chain, defined as the chain of non-captured nodes con-
necting the base node (D) to the root of the version tree (I).

Record elision. Thanks to this structure, the idea of record elision can be simply
explained. To avoid systematically creating a new node in set, we want to detect the
case where the reference to write into is already registered in the final chain, in the sense
that some node in the final chain is already responsible for restoring the previous value.
In this case, creating a new node would be redundant, so we can elide the record.

Logically, performing the write without recording is harder to reason about because it
changes the mappings of existing nodes. More precisely, when record elision takes place
during set 7 v, the write propagates in the final chain, from the root (included) to the
last (and only) Diff node on reference r (excluded). In other words, for each of these
nodes, the new logical mapping is o [r — v], where o is the current mapping,.

Consequently, contrary to the algorithm without record elision, the final chain is not
persistent, in the sense that the mappings attached to its nodes may change. However, the
subtree of captured nodes is entirely persistent, which allows rerooting as before. When
the root is captured for the first time — meaning the final chain is non-empty —, the
final chain is “frozen”, i.e. made persistent.

Note that this optimization is possible because the imperative interface makes snap-
shots explicit. It is not available in the persistent interface.

Having laid out record elision, we now face the question of how to realize it. Indeed,
in the implementation of Section 7.3, there is no way to detect whether a reference is
already registered in the final chain.

Basic realization. A simple approach consists in storing the base node, which can be
used to compute the final chain. Even better, we can store the entire final chain, which
avoids recomputing it. Unfortunately, this implementation does not perform well for two
reasons: (1) the cost of iterating the final chain is linear in the number of distinct modified
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references since the last restore, which may be unacceptable; (2) the liveness properties
are not as good as before because the final chain is kept alive, which prevents it from
being garbage-collected.

Node identifiers. A more sophisticated approach consists in assigning each captured
node a unique identifier and annotating each reference with the identifier of the base node
at the time of the last write. To determine whether record elision is possible, it suffices
to compare the identifier of the reference with the identifier of the current base node; if,
and only if, they are the same, the reference is already registered in the final chain and
therefore elision can be performed.

For this to work, a few adjustments are necessary: (1) keep track of the identifier
of the base node in the store; (2) keep track of the identifiers of captured nodes, either
directly in the nodes or in the snapshots; (3) store identifiers of references in Diff nodes
to restore them correctly during rerooting.

Historic tree. So far, we only considered the version tree as it is represented in memory,
with the root being the current version. We can also look at nodes from the perspective
of the historic tree, whose root is the initial node in the history of the store — we call
the node the origin. For example, the historic trees corresponding to the version trees of
Figure 7.3 are given in Figure 7.9.

This tree is particularly interesting because it is always defined and monotonic: it
grows over time, as new nodes are inserted, but its root never changes. Furthermore, we
make the following remark: according to the structure of the version tree, reversing the
path from the root to some target node is equivalent to (1) reversing the path from the
root to the origin and (2) reversing the path from the origin to the target node. This has
significant implications: at any point in time, the only contributing nodes to the history
of references are exactly those in the path from the origin to the root.

Generations. This new insight suggests an alternative realization: replacing unique
node identifiers with depths in the historic tree. Indeed, a node is not uniquely identified
by its depth in the historic tree but it is sufficient since there is only one contributing
node per depth. To determine whether record elision is possible, it suffices to compare
the depth of the reference with the depth of the current base node.

This realization was discovered by Basile Clément and Gabriel Scherer. In the actual
implementation, depths are called generations and count only captured nodes.

7.4.3 Proof insights

Global generations. Perhaps surprisingly, proving the specification of Figure 7.7 is
non-trivial and extremely tedious. As a matter of fact, Alexandre Moine and Gabriel
Scherer attempted to formalize the reasoning of Section 7.4.2 in Rocq but ran into a wall.
The main difficulty lies in the formalization of the two trees (version tree and historic tree)
and their relationship. In short, while the reasoning was local without record elision, it
becomes global with record elision.

Local generations. Our own, simultaneous attempt succeeded thanks to a key insight:
it is possible to formalize generations in a local way, without making the historic tree
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PSTORE-RAW-RESTORE-SPEC
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restore t s
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Figure 7.10: Pstore: More general specification with ground mapping oy

explicit. As a result, most of the reasoning remains local; global reasoning is still needed
for the version tree but remains manageable.

The idea is the following: given essentially the same rerooting structure as before
where mappings also contain generations, we require (1) the generations of the mapping
of a captured node to be bounded by the node generation and (2) the generation of the
next potential captured node to be strictly greater than the generation of the base node.

Low-level interface. Another difficulty is dynamic reference creation. In the specifica-
tion of Figure 7.7, each reference is local to the branch in which it was created; restoring
another branch discards the reference. This requires small adjustments in the formal-
ization of the rerooting logic, as done by Alexandre Moine in his proof without record
elision #.

We opted for an alternative, arguably more satisfactory way: instead of directly prov-
ing the specification of Figure 7.7, we derived it from a more general specification, given
in Figure 7.10. This specification is closer to the actual implementation in the sense that
references are not local to a branch. When a reference is created, it is published glob-
ally in a ground mapping oy (PSTORE-RAW-REF-SPEC, PSTORE-RAW-MODEL-VALID); any
branch can access the reference (PSTORE-RAW-RESTORE-SPEC).
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Figure 7.11: Pstore: Predicates definition (simplified)

7.4.4 Ghost state

A simplified definition of the predicates model and snapshot is given in Figure 7.11;
we omitted the definition of cnode-model. The structure is roughly similar to that of
Figure 7.5. In particular, the cnodes theory is the counterpart of the nodes theory,
cnode-model is the counterpart of node-model, the iterated conjunction over ¢/og (the
extension of oy with <) is the counterpart of array.model.

In yellow, we highlighted the parts formalizing the tree of captured nodes, represented
as a mapping es from nodes to edges, where an edge consists of a parent node and a chain.
In particular, the pure assertion treemap-rooted es base states that es represents a tree
rooted in base; all the tree logic is contained in the treemap theory.

In blue, we highlighted the parts formalizing the second part of the generation logic
described in Section 7.4.3. The first part resides in the cnode-model predicate.

7.4.5 Future work

Simpler proof. We developed the invariant based on our understanding of the algo-
rithm; in particular, the subtree of captured nodes is explicit. However, this representation
makes rerooting reasoning very tedious. On second thought, since the subtree is entirely
persistent, it should be possible to go back to the normal representation where captured
and non-captured nodes are treated the same. Crucially, though, the final chain — the
non-persistent part — should still be separated. In practice, this would make the proof of
capture slightly more complex but drastically simplify the proof of restore; the proofs
of get and set would be essentially unaffected.
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Semi-persistent interface. In the full algorithm of Basile Clément and Gabriel Scherer,
two interfaces coexist and can be used simultaneously: the persistent interface that we
verified and the semi-persistent [Conchon and Filliatre, 2008| interface. In the semi-
persistent interface, only the ancestors of the current version are preserved; restoring a
version invalidates all the versions that came after. In practice, this interface is sufficient
for most backtracking problems.

On its own, the semi-persistent interface is not difficult to formalize — much simpler
than the persistent interface. The difficulty lies in the combination of the two interfaces.
As a matter of fact, even informally specifying the resulting interface is non-trivial, in-
cluding for its authors; maintenance it is also a problem. An interesting and challenging
future work would consist in figuring out a specification and proving it.

Custom data structures. Recently, Clément et al. [2025] extended persistent stores
to support not only references but also custom data structures such as dynamic arrays
and hash tables. In particular, they define classes of storable data structures as generic
interfaces. It would be interesting and possibly not very difficult to verify this extension.

7.5 Snapshottable union-find

We verified a snapshottable union-find data structure # # built on top of snapshot-
table stores. The union-find data structure is a well-known data structure that can be
used to represent disjoint sets or, equivalently, an equivalence relation. For example, it
is at the core of ML type inference, which proceeds by repeated unification between type
variables. Making it snapshottable allows backtracking, which is often needed in type
inference — for example, to type GADTs.

7.5.1 Specification

The specification is given in Figure 7.12.

The exclusive assertion model ¢ reprs represents the ownership of instance ¢ and the
knowledge that its current state is reprs, a mapping that associates to an element the
representative of its equivalence class. It is returned by create (PUF-CREATE-SPEC) and
used by all operations in an imperative fashion.

The persistent assertion s t reprs represents the knowledge that s is a snapshot
of ¢ that can be used to restore state reprs (PUF-RESTORE-SPEC). It can be obtained
through capture (PUF-CAPTURE-SPEC).

The operations make and union allows the user to incrementally define an equivalence
relation. make creates a new element in a new equivalence class. union merges two equiv-
alence classes — the union-condition predicate ensures that (1) elements are preserved,
(2) only the two merged classes are affected and (3) one of the two representatives was
chosen to be the representative of the resulting class.

repr returns the representative of an element. equiv checks whether two elements are
equivalent, 7.e. are in the same equivalence class, i.e. have the same representative.

7.5.2 Implementation

Essentially, the implementation consists of a standard union-find algorithm where
normal references are replaced with Pstore references to support snapshots. In short, it
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Figure 7.12: Puf: Specification



model t reprs & st reprs &

3 descrs. 3 descrs.
pstore-2.model ¢ descrs * pstore-2.snapshot s t descrs
consistent reprs descrs consistent reprs descrs

Figure 7.13: Puf: Predicates definition

maintains a forest of parent pointer trees where each tree represents an equivalence class.
Path compression is performed during repr and the standard rank heuristic is used in
union.

7.5.3 Ghost state

The definition of model and is given in Figure 7.11; we omitted the definition
of consistent. It is remarkably simple: each predicate relies on the counterpart Pstore
predicate, asserting that the Pstore state is consistent with the actual state through the
pure consistent predicate. Most of the reasoning is contained in the consistent theory and
therefore takes place outside Iris.

7.6 Related work

Conchon and Filliatre [2007] implement persistent arrays and persistent union-find in
OCaml and verify them in Rocq. They use a shallow embedding of OCaml in Rocq with
an explicit heap and express specifications using dependent types. This approach leads
to verbose specifications. On the contrary, we benefit from separation logic and provide
simpler specifications.

Moine et al. [2022] propose the only formal verification of a transient data structure
that we are aware of. They verify both functional correctness and time complexity of a
transient stack in separation logic, using CFML [Charguéraud, 2010|. They represent the
shared mutable state between snapshots using a dedicated assertion. Thanks to Iris ghost
state, we do not need such an assertion: our specifications are simpler.
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Chapter 8

Rcfd: Parallelism-safe file descriptor

As mentioned in Section 4.2.3, the Rcfd module &4/ # from the Eio library is particu-
larly interesting in several respects. Not only does it justify the introduction of generative
constructors in OCaml, but it also demonstrates the use of Iris for expressing realistic
concurrent protocols.

8.1 Specification

The Rcfd module provides a parallelism-safe wrapper around a file descriptor (FD)
relying internally on reference-counting. Interestingly, it is used in Eio in two different
ways, more precisely two different ownership regimes: (1) in the free regime, any domain
can try to access or close the FD; (2) in the strict regime, any domain can try to access the
FD but only the owner domain can close it — and is responsible for closing it. Actually, in
both regimes, “closing” the wrapper only flags it as closed but does not immediately close
the wrapped FD; it will be closed only once it is possible, meaning all ongoing accesses
are done. To verify all uses, the specification of Rcfd, given in Figure 8.1, supports both
regimes.

The persistent assertion inv t owned fd W represents the knowledge that ¢ is a valid
inhabitant of Rcfd.t wrapping the FD fd; it is required by all operations. The boolean
owned corresponds to the ownership regime: loose when owner is false and strict when it
is true. W is an arbitrary fractional predicate controlled by ¢ in the following sense: (1)
when t is created using make, the user has to provide the full predicate ¥ 1 (RCFD-MAKE-
SPEC); (2) when trying to access fd using use, the user may temporary get a fraction of
U if ¢ has not been flagged as closed (RCFD-USE-SPEC).

More precisely, to call use, the user has to supply a closed function, that is called if
the FD has been flagged as closed, and an open function, that is called if the FD is still
open. Consequently, the specification RCFD-USE-SPEC requires a weakest precondition
for both functions. To connect these weakest preconditions to the postcondition, the user
can choose an arbitrary predicate X parameterized by a boolean indicating whether closed
(false) or open (true) was called.

The exclusive assertion owner t represents the ownership of ¢ in the strict regime. It
is returned by make if the user chooses this regime (RCFD-MAKE-SPEC).

close t flags t as closed, if it is not already. RCFD-CLOSE-SPEC requires (1) owner ¢ in
the strict regime and (2) proving that the full ownership of W entails the full ownership
of fd (RCFD-CLOSE-SPEC), which is necessary to call Unix.close. It yields t, a
persistent assertion attesting that ¢ has been flagged as closed.
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persistent (inv ¢ owned fd U) persistent ( t)

RCFD-OWNER-EXCLUSIVE RCFD-OWNER-CLOSING
owner t owner t owner ¢ t

False False

RCFD-MAKE-SPEC
vl

make fd
t.invt owned fd U *
if owned then owner t else True

RCFD-USE-SPEC
inv t owned fd WU x

wp closed () {X false} *

(V q.-V q = wp open fd { res. U q x X true res })
use t closed open
res. 3 b.X b res

RCFD-USE-SPEC-OWNER RCFD-USE-SPEC-CLOSING
inv t owned fd U % inv t owned fd U x

owner t * t *
(Vq.\llq—*wpopenfd{res.\IJq*Xres}) wp closed () {X}

use t closed open

res. X res

RCFD-CLOSE-SPEC
inv t owned fd U x

(if owned then owner t else True) *
(U 1 — 3 chars.unix.fd fd 1 chars)

close t

use t closed open
res. X res

RCFD-CLOSE-SPEC-CLOSING
inv ¢ false fd W x*

t

b. t *
if owned then b = true else True

RCFD-REMOVE-SPEC
invt owned fd U

if owned then owner t else True
remove ¢
0. t %

if owned then
o= Some fd * ¥ 1

else
match o with
| None =
True
| Some fd =
fd = fd«U1
end

close t

false. True

RCFD-REMOVE-SPEC-CLOSING
inv t false fd W x

t

remove ¢

None. True

Figure 8.1: Specification (excerpt)
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Alternatively, instead of closing the FD, remove tries to retrieve the full ownership of
U (RCFD-REMOVE-SPEC). To achieve this, the operation exploits the same mechanism as
close — flagging t as closed — but also waits until all use calls are done.

8.2 Protocol

Thomas Leonard, the author of Rcfd, suggested verifying it to make sure the infor-
mal concurrent protocol he described in the OCaml interface was correct. This protocol
introduces a notion of monotonic logical state — modeled in Iris using a specific resource
algebra [Timany and Birkedal, 2021] — to describe the evolution of a FD. Originally, there
were four logical states but we found that only three are necessary for the verification:
Open, ClosingUsers and ClosingNoUsers.

In the Open state, the FD is available for use, meaning any domain can access it
through use. Physically, this corresponds to the Open constructor.

When some domain flags the FD as closed through close or remove, the state tran-
sitions from Open to ClosingUsers. Crucially, there can only be one such domain. In this
state, the FD is not really closed yet because of ongoing use operations. Physically, this
logical transition corresponds to switching from the Open to the Closing constructor (see
Section 4.2.3) using Atomic.Loc.compare_and_set.

Once all use operations have finished, when the reference-count reaches zero, it is
time to actually “close” the FD by calling the function carried by the Closing construc-
tor. This has to be done only once. The “closing” domain is the one that succeeds
in updating the Closing constructor (to a new one carrying a no-op function) using
Atomic.Loc.compare_and_set. At this point, the state transitions from ClosingUsers to
ClosingNoUsers and the wrapper no longer owns the FD.

8.3 Generative contructors

In Section 4.2.3, we examined the implementation of close to justify the introduction
of generative constructors; in particular, the Open constructor has to be generative. In
doing so, we overlooked part of it. We now consider the full implementation, given in
Figure 8.2.

In the then branch of the outermost conditional, the “closing” domain tries to up-
date the state again using Atomic.Loc.compare_and_set. If, and only if, it succeeds,
it actually closes the FD by calling Unix.close. One might ask whether this is safe
since another domain could have seen the Closing it just published and called the as-
sociated “closing” function, that is Unix.close. The reason is twofold: (1) during the
first Atomic.Loc.compare_and_set, the domain transfers the resource needed to call
Unix.close (see RCFD-CLOSE-SPEC) to t; (2) during the second Atomic.Loc.compare_and_set,
it retrieves this resource, which is still there because the observed state is physically the
same and therefore the “closing” functions are the same. However, we have seen in Sec-
tion 4.2.3 that normal constructors do not enjoy such a property. As a result, the Closing
constructor also has to be generative.
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let closed =
Closing (fun () -> )
let close t =
match t.state with
| Closing _ ->
false
| Open fd as state ->
let close () = Unix.close fd in
let new_state = Closing close in
if Atomic.Loc.compare_and_set [/atomic.loc t.state] state new_state then (

if t.ops ==
&% Atomic.Loc.compare_and_set [Jatomic.loc t.state]l new_state closed
then
close () ;
true
) else (
false
)
Figure 8.2: close implementation
TOKENS-AUTH-VALID TOKENS-AUTH-CONSUME TOKENS-UPDATE-ALLOC
tokens-auth v ¥ ops tokens-auth v ¥ 0 tokens-auth v ¥ ops
0 < ops vl B3¢

tokens-auth v U (ops + 1) %
tokens-frag v ¢ *
Vg

TOKENS-UPDATE-DEALLOC
tokens-auth v ¥ ops

tokens-frag v ¢
vy

B tokens-auth v ¥ (ops — 1)

Figure 8.3: tokens theory
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persistent (Istate-1b v [state)

LSTATE-LB-MONO
Istate’ ~ Istate

Istate-lb ~ Istate

LSTATE-LB-GET
Istate-auth + Istate

LSTATE-VALID
Istate-auth ~ Istate

Istate-lb v Istate’

Istate-lb ~ Istate

LSTATE-VALID-CLOSING-USERS
Istate-auth v Istate

Istate-lb v ClosingUsers
Istate # Open

LSTATE-UPDATE-CLOSE-USERS
Istate-auth v Open
if v.owned then owner ~ else True

Istate-lb v Istate’

£ Istate-auth  ClosingUsers

Istate’ ~~* Istate

LSTATE-VALID-CLOSING-NO-USERS
Istate-auth ~ Istate

Istate-Ib v ClosingNoUsers

Istate = ClosingNoUsers

LSTATE-UPDATE-CLOSE-NO-USERS
Istate-auth v ClosingUsers

& Istate-auth  ClosingNoUsers

Figure 8.4: Istate theory

OWNER-EXCLUSIVE

OWNER-LSTATE-AUTH

OWNER-LSTATE-LB

owner =y owner ~y owner ~y
owner 7y Istate-auth v Istate Istate-Ib v ClosingUsers
False Istate = Open False

Figure 8.5: owner theory



inv-Istate-open v W state ops =
tokens-auth v ¥ ops *
state = ‘Open@y.open [v.fd]

inv-Istate-closing-users v W state ops =

3 fn.

tokens-auth v ¥ ops *

state = ‘Closing[fn] x

0 < ops *

(\If 1 = wpfn O { Q. True})

inv-Istate-closing-no-users state =
3 fn.
state = ‘Closingl[fn] *
wp fn O { 0. True}

inv-Istate v U state Istate ops =
match [state with
| Open =

inv-Istate-open v W state ops

| ClosingUsers =

inv-Istate-closing-users v U state ops

| ClosingNoUsers =

inv-Istate-closing-no-users state

end

inv-inner £ v ¥ £
1 state I[state ops.
{.0ps — ops *
(.state — state
Istate-auth ~ Istate *
inv-Istate v U state Istate ops

inv t owned fd U &
30 7.
t=10x
owned = ~y.owned *
fd = ~.fd *
meta ¢ T y *

‘inv—inner (v ¥

owner ¢ =
30 7.
t =10 %
meta ¢ T 7y x
owner -y

lI>

t
30 7.
t=10x
meta ¢ T ~ x
Istate-lb v ClosingUsers

Figure 8.6: Predicates definition
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8.4 Ghost state

The definition of the predicates (inv, owned and ), given in Figure 8.6, realize
the informal protocol of Section 8.2. It involves three ghost theories.

tokens theory (Figure 8.3). This theory is responsible for the ¥ bookkeeping.

tokens-auth v U ops represents the ¥ stock; ops is the current number of borrowers.
When there is no borrower, the stock can be consumed to obtain ¥ 1 (TOKENS-AUTH-
CONSUME).

tokens-frag v ¢ represents a borrow of fraction ¢q. To get a borrow, one can use TOKENS-
UPDATE-ALLOC, which also yields a fraction of ¥. To end a borrow, one can use TOKENS-
UPDATE-DEALLOC, which symmetrically requires to give back the ¥ fraction.

tokens-auth appears in the Open and ClosingUsers states. In the ClosingNoUsers state,
the FD has been “closed”, meaning the stock has been consumed. tokens-frag does not
appear in Figure 8.6; indeed, it is only used locally, especially in the proof of the use
operation.

Istate theory (Figure 8.4). This theory, similarly to Timany and Birkedal [2021], is
responsible for keeping track of the monotonic logical state.

Istate-auth ~ Istate states that Istate is the current logical state. It can be updated
using LSTATE-UPDATE-CLOSE-USERS and LSTATE-UPDATE-CLOSE-NO-USERS.

Istate-Ib v Istate represents a persistent lower bound on the logical state; in other words,
it attests that the current logical state is at least Istate (LSTATE-VALID). It can be obtained
by taking a snapshot of Istate-auth (LSTATE-LB-GET). For example, Istate-Ib v ClosingUsers
rules out the Open state (LSTATE-VALID-CLOSING-USERS) while Istate-Ib v ClosingNoUsers
rules out everything but the ClosingNoUsers state (LSTATE-VALID-CLOSING-NO-USERS).

Istate-auth is stored in the Iris invariant of inv to be shared between domains. Istate-lb
is used in as a witness that the logical state is at least ClosingUsers, i.e. the FD
has been flagged as closed.

owner theory (Figure 8.5). This theory is responsible for constraining the logical
state in the strict ownership regime. It features a single exclusive assertion, owner 7,
which acts like a key possessed by the owner through owner. As long as the owner holds
the key, the logical state must be Open (OWNER-LSTATE-AUTH, OWNER-LSTATE-LB). To
unlock the logical state and let it step beyond Open, the owner has to relinquish the key
(LSTATE-UPDATE-CLOSE-USERS).
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Chapter 9

Saturn: A library of standard lock-free
data structures

We verified a collection of standard (mostly) lock-free data structures including stacks,
queues (list-based, array-based and stack-based), bags and work-stealing deques. Most
of them are taken from the Saturn [Karvonen and Morel, 2025b], Eio [Madhavapeddy
and Leonard, 2025| and Picos [Karvonen, 2025¢| libraries. These data structures are
meant to be used as is or adapted to fit specific needs. To cover a wide range of use
cases, we provide specialized variants: bounded or unbounded, single-producer (SP) or
multi-producer (MP), single-consumer (SC) or multi-consumer (MC).

Given the sheer number of data structures, we do not detail all of them. We focus on
the most interesting ones, especially those involving non-fixed linearization points [Dongol
and Derrick, 2014].

9.1 Stacks

We verified three variants of the Treiber stack | Treiber, 1986]: (1) unbounded MPMC # #,
(2) bounded MPMC # #, (3) closable unbounded MPMC # #. This last variant features
a closing mechanism: at some point, some thread can decide to close the stack, retrieving
the current content and preventing others from operating on it; we use it in Section 10.7 to
represent a set of vertex successors in the context of a concurrent graph implementation.

As explained in Section 4.2.3, the three verified stacks use generative constructors to
prevent sharing. One may ask whether it would be easier to use a mutable version of
lists instead. From the programmer’s perspective, this is unsatisfactory because (1) the
compiler will typically emit warnings complaining that the mutability is not exploited
and (2) it does not really reflect the intent, i.e. we want precise guarantees for physical
equality, not modify the list. From the verification perspective, this is also unsatisfactory
because the mutable representation is more complex to write and reason about: pointers
and points-to assertions versus pure Rocq list.

Although verified stacks may seem like a not-so-new contribution, it is, as far as we
know, the first verification of realistic OCaml implementations. For comparison, the
exemplary concurrent stacks verified in Iris [Iris development team, 2025b| all suffer from
the same flaw: they need to introduce indirections (pointers) to be able to use the compare-
and-set primitive.
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persistent (inv ¢ ¢)

MPMC-QUEUE-1-MODEL-EXCLUSIVE
model ¢ vs; model ¢ vssy

False

MPMC-QUEUE-1-CREATE-SPEC

nvte
True o —r oo
- vs. model ¢ vs
create () P —————
t.inv it * ~SmpLy t 5
model ¢ vs
model ¢ [] e e e e —— o
res. res = decide (vs = [])
MPMC-QUEUE-1-PUSH-SPEC MPMC-QUEUE-1-POP-SPEC
invite invite
vs. model ¢ vs vs. model ¢ vs
pusht v § ¢ popt §t
~model ¢ (vs - [v]) ~_model # (tail vs)
0. True res. res = head ws

Figure 9.1: Mpmc_queue_1: Specification

9.2 List-based queues

List-based queues are represented using a list of nodes, each containing a value. The
canonical list-based queue is the Michael-Scott queue [Michael and Scott, 1996|, of which
we verified four variants: unbounded MPMC # #, bounded MPMC # #, unbounded
MPSC & # and unbounded SPMC # #. The MPMC variant is used in Sections 10.3
and 10.4.3; the SPMC is used in Section 9.6.

In the following, we focus on the MPMC variant.

9.2.1 Specification

The specification is given in Figure 9.1. The persistent assertion inv t ¢ represents the
knowledge that ¢ is a valid queue. It is return by create (MPMC-QUEUE-1-CREATE-SPEC)
and required by all operations. The exclusive assertion model ¢ vs represents the ownership
of queue t and the knowledge that it contains values vs. It is also returned by create
and accessed atomically by all operations. is_empty (MPMC-QUEUE-1-1S-EMPTY-SPEC)
atomically reads vs and returns whether it is empty. push (MPMC-QUEUE-1-PUSH-SPEC)
and pop (MPMC-QUEUE-1-POP-SPEC) atomically update wvs.

9.2.2 Implementation

In the Iris literature, Vindum and Birkedal [2021] established contextual refinement
of the Michael-Scott queue while Mulder and Krebbers [2023] proved logical atomicity.
However, the implementation we verified differs from the original one in several respects.
As we explain in Section 9.2.3, this requires to redesign and extend the previous Iris
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persistent (saved-pred v V)

SAVED-PRED-AGREE
saved-pred v ¥, saved-pred v ¥y

l>(\1/1 xTr = \112 ZL')

SAVED-PRED-ALLOC
E 3 7. saved-pred 7 ¥

Figure 9.2: Mpmc_queue_1: saved-pred theory

Invariants.

Efficient representation. The Michael-Scott essentially consists of a singly linked list
of nodes that only grows over time. The previously verified implementations, implemented
in HeapLang, use a double indirection to represent the list [Vindum and Birkedal, 2021,
Figure 2|. Similarly to the Treiber stack, this is made so as to be able to use the compare-
and-set primitive of HeapLang.

In OCaml, this would correspond to introducing extra atomic references (Atomic.t)
between the nodes. Using atomic record fields (see Section 2.3.2.2), we can represent the
list more efficiently, without the extra indirection. However, there is one subtlety: in
this new representation: we need to clear the outdated nodes so that their value is no
longer reachable and can be garbage-collected, ¢.e. to prevent memory leak. Consequently,
contrary to previously verified implementations, the nodes are mutable.

External linearization. Our work also revealed another interesting aspect that is not
addressed in the literature, as far as we know. None of the previously verified implemen-
tations deal with the is_empty operation, that consists in reading the sentinel node and
checking whether it has a successor. It it has no successor, it is necessarily the last node of
the chain, hence the queue is empty. If it does have a successor, is_empty returns false,
meaning we must have observed a non-empty queue. However, this last part is more
tricky than it may seem. Indeed, it may happen that (1) we read the sentinel while the
queue is empty, (2) other operations fill and empty again the queue so that the sentinel is
outdated, (3) we read the successor of the former sentinel while the queue is still empty.
The crucial point here is that is_empty is linearized when the first push operation filled
the queue. In other words, the linearization point of is_empty is triggered by another
operation; this is called an external linearization point.

9.2.3 Ghost state

The definition of inv and model is given in Figure 9.7. It relies on five simple ghost
theories: saved-pred, history, front, model and waiters.

saved-pred theory (Figure 9.2). The persistent saved-pred v ¥ represents the knowl-
edge that the logical name ~ is bound to the Iris predicate V; it is a basic example of
higher-order ghost state. Due to a restriction on the latter, two Iris predicates with the
same name are only (extensionally) equal under the later modality (SAVED-PRED-AGREE).
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persistent (history-at -y i node)

HISTORY-AT-GET HISTORY-AT-LOOKUP HISTORY-AT-AGREE
hist [i] = Some node history-auth ~ hist history-at v i node;
history-auth ~ hist history-at « i node history-at « i nodes
history-at v i node hist [i] = Some node node; = nodes

HISTORY-UPDATE
history-auth ~ hist
& history-auth ~ (hist 4 [node]) *
history-at v (length hist) node

Figure 9.3: Mpmc_queue_1: history theory

persistent (front-lb ~y 7)

FRONT-LB-LE FRONT-LB-VALID FRONT-UPDATE

FRONT-LB-GET i < front-auth v 4, i <

front-auth v i front-lb ~y i front-lb v iy front-auth ~ 7
front-1b ~ ¢ front-Ib ~ 4’ 1o < 1y & front-auth 7 ¢/

Figure 9.4: Mpmc_queue_1: front theory

MODEL-1-EXCLUSIVE MODEL-2-EXCLUSIVE MODEL-AGREE MODEL-UPDATE

model; v vs; modely v vsy model; v vsq model; v vs;

model; v wvsy modely v vsg modely v vsy modely v vsgy
False False VS1 = USo E model; v vs *

model, v wvs

Figure 9.5: Mpmc_queue_1: model theory

WAITERS-DELETE

WAITERS-INSERT waiters-auth Y waiters

waiters-auth v waiters waiters-at v waiter i

= 3 waiter. B waiters [waiter] = Some i *
waiters-auth v (waiters [waiter — i]) * waiters-auth « (delete waiter waiters)

saved-pred waiter ¥ x
waiters-at v waiter i

Figure 9.6: Mpmc_queue_1: waiters theory
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waiter-au v ¥ £
(vs.model; v vs | model; v vs = U (decide (vs = [])))., i,

waiter-model v past waiter i £
3.
saved-pred waiter U x
if decide (i < length past) then
U false
else
waiter-au v ¥

inv-inner ¢ v £

3 hist past front nodes back vs waiters.
hist = past 4 [front] 4 nodes *

back € hist x

(. front — front

¢.back — back *

xtchain {tag: §Node; size: 2} hist §Null x

<>l< node.data — v) *
node,vEnodes,vs
history-auth ~ hist

front-auth 7 (length past) *
modely v vs x

F *

vt
3.
t=10x%

L= "y.inv *
meta / T ~ x

P 7y.inv
inv-inner ¢ ~y

model ¢ vs =
3.
t =10 x
meta ¢ T ~ x
model; v wvs

Figure 9.7: Mpmc_queue_1: Predicates definition
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history theory (Figure 9.3). This theory is responsible for keeping track of all the
nodes involved in the history of the queue. The assertion history-auth « hist represents
the ownership of the full history hist, which can only grow (HISTORY-UPDATE). The
persistent assertion history-at v ¢ node represents the knowledge that the i-th node of the
queue is node (HISTORY-AT-LOOKUP).

front theory (Figure 9.4). This theory is responsible for enforcing the monotonicity of
the front index, i.e. the index of the sentinel node, by tying it to the front-auth predicate
(FRONT-UPDATE). The persistent assertion front-Ib y ¢ represents the knowledge that i is
a lower bound of the current front index (FRONT-LB-VALID).

model theory (Figure 9.5). This theory is responsible for keeping track of the logical
content of the queue through two agreeing (MODEL-AGREE) parts model; and models.
They are respectively stored in model and inv.

waiters theory (Figure 9.6). This theory is responsible for keeping track of the
is_empty operations to be linearized, called the waiters. The assertion waiters-auth v waiters,
stored in inv, keeps track of all the waiters. The assertion waiters-at v waiter represents
the ownership of a waiter. When a is_empty operation reads the sentinel node, it regis-
ters itself as a waiter (WAITERS-INSERT) and stores the atomic update (see Section 3.8)
materializing its linearization point into inv; then, when it reads the successor of the sen-
tinel, it cancels the waiter (WAITERS-DELETE) and retrieves the atomic update (that may
or may not have been triggered).

Node chain. To represent the mutable chain of nodes, we introduce the notion of
explicit chain that allows decoupling the chain structure formed by the nodes and the
content of the nodes. Concretely, the assertion xchain dq ¢s dst # represents a chain
linking locations ¢s and ending at value dst; dg is a discardable fraction [Vindum and
Birkedal, 2021| that controls the ownership of the chain. In Figure 9.7, we use a variant
of this assertion xtchain hdr ¢s dst # that additionally requires £s to have header hdr.

This notion is very flexible as it is independent of the rest of the structure. As a matter
of fact, we used it and its generalization to doubly linked list more broadly, to verify other
algorithms. All the variants of Michael-Scott we verified rely on it. In particular, it was
quite straightforward to extend the invariant of the bounded queue, where nodes carry
more (mutable and immutable) information.

9.2.4 Future work

Hybrid queues. In the future, it would be interesting to build on this work to verify
more complex hybrid queues (see Section 9.4), i.e. queues based on a list of (possibly
circular) arrays.

Cooperative pointer reversal. Another generic way to implement a list-based queue
is to rely on cooperative pointer reversal. In short, it consists in reversing the implemen-
tation of the Michael-Scott push operation: instead of first adding a new node to the end
of the list and then updating the back pointer, the back pointer is updated first and then
the node is added to the list — this last part may be performed cooperatively by another
operation.
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Vesa Karvonen proposed an MPMC queue! following this design in Saturn. Dmitry
Vyukov also proposed an MPSC queue? based on the idea of reversing the push operation.
It would be interesting to verify them.

9.3 Array-based queues

Array-based queues rely on an array of values, commonly operated as a ring buffer.
As far as we know, three such queues have been verified in Iris: two bounded MPMC
queues [Mével and Jourdan, 2021; Carbonneaux et al., 2022] and an unbounded MPMC
queue [Vindum et al., 2022].

We verified two other array-based queues from Saturn: (1) a bounded SPSC queue # #,
consisting of a circular array and two cached indices; (2) a relaxed MPMC queue & #
(a bag) that can be seen as a simplified version of the queue verified by Vindum et al.
[2022|, where operations are similarly assigned a single-element queue but not ordered.

9.4 Towards hybrid queues: infinite-array-based queues

Some of the fastest queues proposed in the literature [Morrison and Afek, 2013; Yang
and Mellor-Crummey, 2016; Ramalhete, 2016; Nikolaev, 2019; Romanov and Koval, 2023|
are hybrid, 7.e. employ a list of arrays. We implemented such a queue # in OCaml.

When we tried to verify it, we encountered interesting problems that also occur in
less realistic infinite-array-based queues. We claim that studying these idealized queues
provides insights that are crucial for the (future) verification of the original hybrid queue.
In this section, we present two verified infinite-array-based queues, leaving the extension
to hybrid queues for future work.

9.4.1 First implementation: patient consumers
9.4.1.1 Specification

The specification of the first queue & # is given in Figure 9.8. If is similar to that of
Figure 9.1, except pop always succeeds and it features an additional size operation.

9.4.1.2 Implementation

The implementation is extremely simple and can be seen as an idealized version of
the queue verified by Vindum et al. [2022] — we realized this proximity after carrying
out the verification. It relies on (1) two ticket dispensers, one for producers and one for
consumers, incremented atomically using the fetch-and-add primitive, and (2) an infinite
array (see Section 6.11) of slots. push ¢ v takes a ticket from the producer dispenser and
writes v into the corresponding cell of the infinite array. pop ¢ takes a ticket from the
consumer dispenser and waits until the corresponding producer has written its value.

'https://github.com/ocaml-multicore/picos/pull/350
’https://www.1024cores.net/home/lock-free-algorithms/queues/
intrusive-mpsc-node-based-queue
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persistent (inv ¢ ¢)

INF-MPMC-QUEUE-1-MODEL-EXCLUSIVE
model ¢ vs; model ¢ vs;

False

INF-MPMC-QUEUE-1-CREATE-SPEC

invte
True e e -
- vs. model t vs
create () .
: S sizet §¢
t.invtx
model t vs
model ¢t [ oo
res. res = length vs
INF-MPMC-QUEUE- 1-IS-EMPTY-SPEC INF-MPMC-QUEUE- 1-PUSH-SPEC
invte invte
vs. model t vs vs. model t vs
is_empty ¢ § ¢ pusht v § ¢
model t vs model ¢ (vs H [v])
res. res = decide (vs = []) 0. True

vs. model t vs
popt st
v s vs=uv:vs x
model ¢ vs’

res. res = v

Figure 9.8: Inf_mpmc_queue_1: Specification
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External linearization. Given this implementation, the question is: when are push
and pop linearized? The analysis is exactly the same as in Vindum et al. [2022].

A push operation is linearized at the point when it atomically takes a ticket. As a
result, the logical content of the queue is updated before the pushed value is physically
written in the array. Also, a producer may be linearized before another producer but
write its value after.

The linearization point of pop, however, is non-fixed and may be external. If the
consumer arrives after the corresponding producer, pop is linearized at the point when it
atomically takes a ticket. If the consumer arrives before the producer, pop is linearized
by the producer just after the linearization of the latter.

Future-depend linearization. The size successively reads the value of the producer
dispenser, the consumer dispenser and the producer dispenser again; if the value has not
changed, it returns the positive part of the difference; otherwise, it starts over. Interest-
ingly, the linearization point is future-depend: size may or may not be linearized at the
time it reads the consumer dispenser, depending on whether it later observes the same
value for the producer dispenser. This pattern appears frequently in concurrent size
operations.

9.4.1.3 Ghost state

Although the implementation is very short, it is quite challenging to verify. In par-
ticular, it involves non-trivial ghost state more or less similar to Vindum et al. [2022].
The external linearization point is handled using atomic updates (see Section 3.8) and
the future-dependent linearization point using a local prophecy variable (see Chapter 5).
We refer to the mechanization # for details.

9.4.2 Second implementation: impatient consumers
9.4.2.1 Specification

The specification of the second queue # # is given in Figure 9.9. If is similar to that
of Figure 9.8, except the specification of size and is_empty is slightly weaker.

9.4.2.2 Implementation

The implementation is also based on two ticket dispensers ordering the operations.
However, consumers are now impatient: after taking a ticket, a consumer directly performs
an atomic exchange, replacing the content of the corresponding slot with Closed and
returning the former content; if the latter is Value v, pop returns v; otherwise, it starts
over. Symmetrically, push ¢ v takes a ticket and attempts to atomically update the
content of the corresponding slot from Empty to Value v; if the update fails, meaning the
consumer was quicker, the operation starts over.

Linearization. Although this may look like a benign optimization, it has dramatic
consequences. To explain, let us ask the same question as before: when are push and
pop linearized? Even if the producer arrives first, it is not certain to win the update and
therefore cannot be linearized as before. Conversely, even if the consumer arrives last, it
cannot be linearized right away since it might still win the update.
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persistent (inv ¢ ¢)

INF-MPMC-QUEUE-2-MODEL-EXCLUSIVE
model ¢ vs; model ¢ vs;

False

INF-MPMC-QUEUE-2-CREATE-SPEC

invte
True - oo om— -
- vs. model ¢ vs
create () -
: - sizet §¢
t.invte*
model ¢ vs
model ¢ -
sz. length vs < sz
INF-MPMC-QUEUE-2-I1S-EMPTY-SPEC INF-MPMC-QUEUE-2-PUSH-SPEC
invite invte
vs. model ¢ vs vs. model ¢ vs
is_empty ¢ § ¢ pusht v § ¢
,,,,,,, model ¢ vs _model ¢ (vs +-[v])
b. if b then vs =[] else True 0. True

INF-MPMC-QUEUE-2-POP-SPEC

vs. model t vs
popt st
v s vs=uv:vs x
model ¢ vs’

res. res = v

Figure 9.9: Inf_mpmc_queue_2: Specification
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persistent (Istates-at «y ¢ Istate) persistent (Istates-lb «y i Istate)

LSTATES-AT-LOOKUP LSTATES-LB-GET
Istates-auth v Istates Istates [i] = Some Istate
Istates-at ¢ Istate Istates-auth ~ Istates
Istates [i] = Some Istate Istates-Ib ~ i (Istate-winner Istate)

LSTATES-LB-AGREE
Istates-lb v ¢ Istate;

Istates-lb v @ Istate,

Istate-winner [state; = Istate-winner [states

LSTATES-UPDATE
Istates-auth v Istates
& Istates-auth ~ (Istates 4 [Istate]) *
Istates-Ib v (length Istates) (Istate-winner Istate) *
Istates-at v (length Istates) Istate

Figure 9.10: Inf_mpmc_queue_2: Istates theory

persistent (producers-at « i Discard)

PRODUCERS-AT-EXCLUSIVE

producers-at 7 i Own PRODUCERS-AT-DISCARD PRODUCERS-UPDATE
producers-at v i own producers-at v ¢ Own producers-auth ~ i
False E producers-at ~y 4 Discard & producers-auth v (i + 1) *

producers-at v ¢ Own

Figure 9.11: Inf_mpmc_queue_2: producers theory

If the producer arrives first, either it (1) wins the update and is linearized when it
takes a ticket, or (2) loses the update and starts over. If the producer arrives last, either it
(1) wins the update and is linearized when it takes a ticket, linearizing the corresponding
consumer at the same time, or (2) loses the update and starts over. The situation is
symmetric for the consumer. Consequently, the linearization point of push is future-
dependent and that of pop is both future-dependent and possibly external.

9.4.2.3 Ghost state

The definition of inv and model is given in Figure 9.13; we omit the definition of
inv-Istate-left, inv-Istate-right and inv-slot. It relies on six ghost theories: model, history,
Istates, producers and consumers.

Prophecy variable. To deal with the future-dependent linearization points, we use
a shared multiplexed prophecy variable (see Section 5.4) stored into the queue. This
prophecy variable predicts the per-index winner of the slot update. To distinguish oper-
ations, we use the same trick as Jung et al. [2020], i.e. physical identifiers.
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persistent (consumers-at 7 i Discard) persistent (consumers-Ib 7 )

CONSUMERS-AT-EXCLUSIVE CONSUMERS-LB-VALID
consumers-at v 7 Own CONSUMERS-AT-DISCARD consumers-auth v i
consumers-at v ¢ own consumers-at v i Own consumers-lb v j
False E consumers-at «y ¢ Discard Jj<i
CONSUMERS-LB-GET CONSUMERS-UPDATE
consumers-auth v ¢ consumers-auth v ¢
consumers-lb vy ¢ [ consumers-auth «y (i + 1)

consumers-at v i Own

Figure 9.12: Inf_mpmc_queue_2: consumers theory

inv-inner v £ model t vs £
3 front back hist slots Istates pasts prophss. 30 .
(. front — front t=10x
¢.back — back * meta ¢ T ~ x
inf-array.model ~.data slots x model; v vs

modely v (oflatten (drop front hist))
history-auth ~ hist *

length hist = back *

Istates-auth v Istates

length Istates = max front back x
‘wise-prophets.model 5.proph 7.proph-name pasts prophss -
producers-auth v back *

consumers-auth ~ front *

(*z — Istate € take back Istates inv-Istate-left y back i lstate) *

*k — Istate € drop back Istates inv-Istate-right v (back + k) lstate) *

(V i.inv-slot 7y i (slots 1) (pasts 1))

invt.&
30 7.
t=10x
L= y.inV *
meta £ T v x
(.data — v.data x
¢.proph +— 7y.proph *
inf-array.inv y.data *

. 7y-inv

Figure 9.13: Inf_mpmc_queue_2: Predicates definition (excerpt)
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To carry out the proof, we must resolve the prophecy variable atomically while up-
dating the infinite array. For doing so, we crucially rely on the special update operations
performing prophecy resolution internally, presented in Section 6.11.

model theory. This theory is similar to Figure 9.5. It connects inv and model.
history theory. This theory is similar to Figure 9.3. It keeps track of the pushed values.

Istates theory (Figure 9.10). This theory is the most important one. It is responsible
for keeping track of the logical state of each slot: Producer indicates that the producer wins
the update, Consumer indicates that the consumer wins the update, ProducerProducer indi-
cates that the producer arrived first and wins the update, ProducerConsumer indicates that
the producer arrived first and loses the update, and symmetrically for ConsumerConsumer
and ConsumerProducer.

The assertion Istates-auth 7 Istates represents the ownership of the logical states. The
persistent assertion Istates-at v i Istate represents the knowledge that the logical state of
the i-th slot is Istate (LSTATES-AT-LOOKUP). The persistent assertion Istates-Ib v i Istate
represents the knowledge that [state is a lower bound on the logical state of the i-th slot;
in practice, Istate is either Producer or Consumer, thereby indicating the winner.

When the first operation arrives, it predicts the winner and sets the logical state
accordingly, thereby imposing its prediction to the other. One may wonder why the logical
state contain so much information. Empirically, our attempts showed that this is needed
to carry out the proofs, especially to deal with corner cases; it seems that decoupling the
winner information from the rest through separate ghost state is not possible.

producers theory (Figure 9.11). This theory is responsible for the emission of pro-
ducer tokens (PRODUCERS-UPDATE), which are initially exclusive (PRODUCERS-AT-EXCLUSIVE)
but can be made persistent (PRODUCERS-AT-DISCARD).

consumers theory (Figure 9.12). Similarly, this theory is responsible for the emission
of consumer tokens (CONSUMERS-UPDATE).

9.5 Stack-based queues

A standard way to implement a sequential queue is to use two stacks: producers push
onto the back stack while consumers pop from the front stack, stealing and reversing the
back stack when needed. Based on this simple idea, Vesa Karvonen developed a new lock-
free concurrent queue. We verified three variants: an MPMC queue # # from Picos, a
basic MPSC queue # # from Saturn and a closable MPSC queue # # from Eio.

Generative constructors. Similarly to the sequential implementation, the two stacks
are mainly immutable. Both stacks are updated using compare-and-set, so we use gener-
ative constructors to reason about physical equality.
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Figure 9.14: Mpmc_queue_2: States

Concurrent stack reversal. Similarly again, producers and consumers work concur-
rently on separate stacks, limiting interference. The key difference compared to the se-
quential version is that the algorithm has to deal with the concurrent back stack reversal
in a lock-free way.

Figure 9.14 shows the three states involved in the reversal. Essentially, the concurrent
protocol — and therefore the Iris invariant — includes a destabilization phase during which
a new back stack pointing to the old one awaits to be stabilized (Figure 9.14b), which
happens when the reversed old back stack becomes the new front stack (Figure 9.14c).
To fully stabilize the structure, the link from the new back stack to the old is removed
(Figure 9.14a). In practice, the synchronization is fairly tricky and relies on the indices
of the elements.

9.6 Relaxed queue

We implemented and verified a relaxed queue # # guaranteeing only per-producer
FIFO ordering. It is based on an industrial-strength C++ queue |Desrochers, 2025]. What
makes it interesting is its original interface, which differs from other queues we worked
on.

9.6.1 Specification

The specification is given in Figure 9.15. It features four predicates: inv, model,

and consumer.

The persistent assertion inv t ¢ represents the knowledge that ¢ is a valid queue. It is
returned by create (BAG-2-CREATE-SPEC) and require by all operations.

The exclusive assertion model ¢ vss represents the ownership of queue ¢ and the knowl-
edge that it contains the per-producer values vss. It is also returned by create (BAG-2-
CREATE-SPEC) and accessed atomically by most operations.

The exclusive assertion t prod ws represents the ownership of producer prod
attached to queue t; ws is an upper bound on the values of the sub-queue corresponding
to prod (BAG-2-PRODUCER-VALID). create_producer t creates a new producer for ¢
(BAG-2-CREATE-PRODUCER-SPEC). push prod v atomically pushes v into the sub-queue
of producer prod (BAG-2-PUSH-SPEC). close_producer prod marks producer prod as
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persistent (inv ¢ ¢)
BAG-2-PRODUCER-VALID
tC &
BAG-2-MODEL-EXCLUSIVE invte BAG-2-PRODUCER-EXCLUSIVE
model ¢ vss; model ¢ vss t1 prod wsq
model ¢ vss, t prod ws to prod wss
False

B, 3 vs.

False

vss [prod] = Some vs
suffix vs ws

BAG-2-CONSUMER-EXCLUSIVE
consumer t; cons

consumer ty cons
False
BAG-2-CREATE-PRODUCER-SPEC
BAG-2-CREATE-SPEC | nvie
True vss. model t vss
create () create_producer t § ¢
t.invt o x prod. model t (vss [prod — []])
model ¢ () res. res = prod *
t prod ||
BAG-2-PUSH-SPEC
inv t ¢
t prod ws BAG-2-CLOSE-PRODUCER-SPEC
777777777777777777777777 inv t ¢k
vss. model ¢ vss
t prod ws
push prod v § ¢
close_producer prod
vs. vs [prod] = Some wvs *
O. t prod ws

model ¢ (vss [prod — vs 4 [v]])

t prod (vs 4 [v])

BAG-2-CREATE-CONSUMER-SPEC
invite

create_consumer t
cons. consumer t cons

BAG-2-POP-SPEC
invt*
consumer t cons
7777777 vss. model t vss
pop t cons § ¢
o. match o with
| None =
model t vss
| Some v =
3 prod vs.
vss [prod] = Some (v :: vs) *
model ¢ (vss [prod — wvs])
end
77777 res. res =o0%
consumer t cons

Figure 9.15: Bag_2: Specification
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Figure 9.16: Work stealing

closed (BAG-2-CLOSE-PRODUCER-SPEC), which does not affect the current consumers
but makes the corresponding sub-queue unavailable for future consumers.

The exclusive assertion consumer ¢ cons represents the ownership of consumer cons
attached to queue t. create_consumer t creates a new consumer (BAG-2-CREATE-
CONSUMER-SPEC). pop t cons pops a value from ¢ through consumer cons.

9.6.2 Implementation

Producers. A queue consists of a lock-free linked list of SPMC sub-queues (see Sec-
tion 9.2), each corresponding to a single producer. A producer stores both its sub-queue
and the linked list node where the sub-queue can be found. push simply calls the same
operation on the sub-queue. close_producer removes the sub-queue from the linked list,
preventing future consumers from accessing it.

Consumers. A consumer consists of an optional default sub-queue. The first time it
is used through pop, it traverses the linked list looking for a non-empty sub-queue. If it
finds one, the consumer records it as a default target for future pop operations; otherwise,
the operation fails.

9.7 Work-stealing deques

Work-stealing. Randomized work stealing |Blumofe and Leiserson, 1999 is the stan-
dard strategy for parallel task scheduling. It has been implemented in many libraries,
including Cilk [Blumofe et al., 1996; Frigo et al., 1998], TBB, OpenMP, Taskflow [Huang
et al., 2022|, Tokio and Domainslib [Multicore OCaml development team, 2025].

The idea of work-stealing, illustrated in Figure 9.16, is the following. Each domain
owns a deque-like data structure, called work-stealing deque, to store its tasks. Locally,
each domain treats its deque as a stack, operating at the back end. When a domain runs
out of tasks, it becomes a thief: it tries to steal a task from the deque of another randomly
selected “victim” domain, operating at the front end. Multiple thieves may concurrently
attempt to steal tasks from a single deque.
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Work-stealing deque. The most popular work-stealing deque algorithm is the Chase-
Lev deque [Chase and Lev, 2005; Lé et al., 2013]; it is lock-free and unbounded. We
verified the implementation from Saturn # # along with two other variants: a bounded
variant # #, used in the Moonpool [Cruanes, 2025] and Taskflow [Huang et al., 2022]
libraries, and an idealized infinite-array-based variant # #.

Remarkably, the three variants essentially share the same logical states. In particular,
although they do not behave exactly the same way, the original and the idealized versions
follow a similar concurrent protocol, involving external and future-dependent linearization.

9.7.1 Infinite work-stealing deque
9.7.1.1 Specification

The specification of the infinite-array-based version is given in Figure 9.17. It features
three predicates: inv, model and

The persistent assertion inv t ¢ represents the knowledge that ¢ is a valid deque. It is
returned by create (INF-WS-DEQUE-CREATE-SPEC) and required by all operations.

The exclusive assertion model ¢ vs represents the ownership of the content of the deque
vs. It it returned by create and accessed atomically by all operations.

The exclusive assertion t ws represents the owner of the deque; ws is an upper
bound on the current content of the deque (INF-WS-DEQUE-OWNER-MODEL). It is re-
turned by create and used by all private operations: size (INF-WS-DEQUE-SIZE-SPEC),
is_empty (INF-WS-DEQUE-IS-EMPTY-SPEC), push (INF-WS-DEQUE-PUSH-SPEC) and pop
(INF-WS-DEQUE-POP-SPEC). The only public operation is steal (INF-WS-DEQUE-STEAL-
SPEC), which does not require

Note that the public postconditions of the private operations are quite verbose. This
is due to the fact that is passed to the operation and therefore cannot be combined
with model through INF-WS-DEQUE-OWNER-MODEL to get information about the content
of the deque; instead, we provide such information in the public postcondition. We need
this expressivity in practice to verify a wrapper # # with better liveness properties.

9.7.1.2 Weak specification.

In parallel with this thesis, Choi [2023] also worked on the verification of the Chase-
Lev work-stealing deque. However, we argue that the specification he proves, given in
Figure 9.18, is unsatisfactory. Indeed, contrary to our specification, WS-DEQUE-STEAL-
SPEC-WEAK and WS-DEQUE-POP-SPEC-WEAK say nothing about the observed content of
the deque when the operation fails.

In practice, these weaker specifications, especially that of pop, are not sufficient to
reason about the termination of a work-stealing scheduler. In Chapter 10, we show how
our strong specifications are lifted all the way up to the scheduler.

Another point we would like to make is that weakening the specification does make
the verification simpler, but one may argue that the most subtle and interesting part of
it is lost.

9.7.1.3 Implementation

The implementation relies on (1) an infinite array (see Section 6.11), (2) a monotonic
front index for the thieves, and (3) a back index reserved to the owner of the deque.
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Figure 9.17: Inf_ws_deque: Specification
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Figure 9.18: Ws_deque: Weak specification
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Figure 9.19: Inf_ws_deque: Physical state
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Figure 9.20: Inf_ws_deque: Logical state

In general, we can divide the infinite array as in Figure 9.19. The first part, between
0 and the front index, corresponds to the persistent history of stolen values. The second
part, between the two indices, corresponds to the logical content of the deque, as repre-
sented by model. The last part, beyond the back index, corresponds to the private section
of the array, reserved to the owner.

Given this representation, the algorithm proceeds as follows. push ¢ v writes v into
the first private cell and atomically increments the back index, thereby publishing the
value. Symmetrically, pop ¢ atomically decrements the back index and returns the value
of the cell it just privatized. steal ¢ is much more careful: (1) it reads the front and the
back indices; (2) if the deque looks empty, it fails; (3) otherwise, it attempts to advance
the front index; (4) if the update succeeds, the value at the front index is returned; (5)
otherwise, it starts over.

The above description overlooked one crucial aspect: what happens at the limit, when
pop and steal compete for the last value in the deque? In that case, the deque must
be stabilized: pop also attempts to advance the front index before incrementing the back
index — whether it wins the update or not — thereby equalizing the two indices.

9.7.1.4 Logical states

Figure 9.20 tells the same story as above in terms of four logical states: (1) in the
stable “empty” state, the deque is indeed empty, as indicated by the two equal indices; (2)
in the stable “non-empty” state, the model is non-empty, meaning thieves may compete
for the first value; (3) in the unstable “emptyish” state, the thieves and the owner compete
for the same value; (4) in the unstable “super-empty” state, some operation won the value
and the deque is waiting to be stabilized by the owner.

Let us now focus on the “emptyish” state. In this physical configuration, it makes
sense to say that the model of the deque should be empty. In fact, is has to be empty: if a
steal operation observed this state, it would conclude that the deque is empty — except
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under a weak specification. But then, if the model should be empty, which operation was
linearized during the transition to the “emptyish” state? We have no choice: it should
be the winner of the front update, i.e. the operation which triggers the transition to the
“super-empty” state. In conclusion, we have to predict the winner using a (multiplexed)
prophecy variable (see Chapter 5).

9.7.2 Bounded work-stealing deque

In the bounded variant, the infinite array is replaced with a finite circular array. As
a consequence, the convenient infinite representation goes away and tedious reasoning
about circular array slices is required. However, the logical states and transitions as well
as the prophecy mechanism are essentially the same.

It is an open question whether we could factorize part of the verification through a
well-chosen abstraction that could be instantiated both with infinite and circular arrays.
One certainty is that this is not possible without slightly altering the implementation of
the infinite variant: in steal, the front cell is read after performing the update in the
infinite variant, which would be incorrect in the finite variant since the owner is allowed
to overwrite the value.

9.7.3 Dynamic work-stealing deque

In the original algorithm, the owner may dynamically resize the circular array. More
precisely, it can change the array at will provided that the public part (between the two
indices) is preserved. Thus, while only one array is stored in the deque, there can be
many different circular arrays alive at the same time, i.e. accessible by thieves.

While the invariant of Choi [2023| requires additional ghost state to keep track of the
arrays and maintain their compatibility, the precision of our notion of logical state allows
to only maintain compatibility between the current array and the array read by the next
winner (if any).

9.8 Future work

Relaxed memory model. As mentioned in Section 4.4, the main shortcoming of Zo-
oLang is its sequentially consistent memory model. This is of particular concern in the
algorithms we verified in this chapter, which use shared non-atomic variables for effi-
ciency but should also guarantee synchronization. Thus, it would be interesting to apply
the methodology of Mével and Jourdan [2021] to adapt our invariants to relaxed memory.

Other data structures. Two important data structures from Saturn remain unverified
as of today: a hash table and a skiplist. We already started working on the hash table on
paper; although some parts are technical, it should be feasible to finish and mechanize the
proof. The skiplist, however, seems more challenging; recent work [Carrott, 2022; Patel
et al., 2024; Park et al., 2025| suggests new avenues that are worth exploring.
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Chapter 10

Parabs: A library of parallel
abstractions

The culminating point of our work is the verified Parabs library # #, offering parallel
abstractions atop a task scheduler. While it was originally based on Domainslib [Mul-
ticore OCaml development team, 2025| (see Section 2.4), it evolved as a more ambitious
project aimed at unifying various existing paradigms and scheduling strategies. It was
designed with a focus on flexibility, letting users choose the scheduling strategy and build
their own scheduler. One of the motivations of this design is to provide a framework to
easily develop and experiment parallel infrastructures in OCaml 5.

10.1 Overview

Figure 10.1 gives an overview of Parabs; solid edges represent module dependencies
while dashed edges represent interface implementations. Essentially, the library is made
of four abstraction levels built on top of each other: Ws_deques, Ws_hub, Pool and Future
/ Vertex.

The Pool module provides a task scheduler; internally, it maintains a pool of domains.
Its design is inspired by Domainslib, Taskflow [Huang et al., 2022| and Moonpool [Cru-
anes, 2025|. As of today, it supports three scheduling strategies: (1) standard randomized
work-stealing [Blumofe and Leiserson, 1999] with public deques (as presented in Sec-
tion 9.7), (2) randomized work-stealing with private deques [Acar et al., 2013|, (3) a
simple “first-in first-out” strategy with one shared queue. In addition, it should be possi-
ble to implement other scheduling strategies (see Section 10.11), e.g. work sharing.

On top of Pool, the Vertex module provides a task graph abstraction. More precisely,
it is an implementation of DAG-calculus [Acar et al., 2016] — we present it in Section 10.7.

Remarkably, the three upper levels implemented on top of Ws_deques should be OCaml
functors. Unfortunately, ZooLang does not currently support functors; therefore, only one
branch of the tree of Figure 10.1 is active at a time.

10.2 Work-stealing deques

At the first level, Ws_deques # provides a generic interface for a set of work-stealing
deques, abstracting over the underlying scheduling strategy. We describe its specification
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Figure 10.1: Overview of the Parabs library
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(Section 10.2.1) and two current realizations: Ws_deques_public (Section 10.2.2) and
Ws_deques_private (Section 10.2.3).

10.2.1 Specification

The specification of Ws_deques is given in Figure 10.2. Similarly to Section 9.7, it
features three predicates: inv, model and

The persistent assertion inv ¢ v sz represents the knowledge that ¢ is a set of work-
stealing deques; v is a user-provided invariant name and sz is the number of deques. It is
returned by create (WS-DEQUES-CREATE-SPEC) and required by all operations.

The assertion model ¢ vss represents the possession of ¢ and the knowledge that it cur-
rently contains values vss (list of lists of values, one per deque). It is returned by create
(WS-DEQUES-CREATE-SPEC) and modified atomically by push (WS-DEQUES-PUSH-SPEC),
pop (WS-DEQUES-POP-SPEC), steal_to (WS-DEQUES-STEAL TO-SPEC) and steal_as
(WS-DEQUES-STEAL-AS-SPEC).

The exclusive assertion t ¢ status ws is the owner token of the i-th deque of t.
It is also returned by create (WS-DEQUES-CREATE-SPEC). Similarly to Section 9.7, it
grants its possessor (the owner of the i-th deque) the right to access the owner’s end of the
i-th deque, i.e. the right to call push (WS-DEQUES-PUSH-SPEC) and pop (WS-DEQUES-
POP-SPEC); more generally, it is used by owner-only operations. The values ws represent
an upper bound on the actual values of the deque (WS-DEQUES-MODEL-OWNER); in
particular, when ws is empty, the deque must be empty. status is the current status of
the deque, i.e. either Blocked or Nonblocked. Indeed, blocking a deque through block
(WS-DEQUES-BLOCK-SPEC) is necessary for its owner to call steal_to (WS-DEQUES-
STEAL-TO-SPEC) and steal_as (WS-DEQUES-STEAL-AS-SPEC); conversely, a deque can
be unblocked using unblock (WS-DEQUES-UNBLOCK-SPEC).

Most specifications are straightforward; atomic specifications update model in the
expected way. Note that there are two stealing operations: steal_to and steal_as';
steal_to t 7 j attempts to steal from the j-th deque only once while steal_as t i round
performs one random round (see Section 6.5) of steal_to attempts, i.e. tries to steal
from all other deques in a random order given by round.

Remarkably, the specifications of steal_to and steal_as are weaker than one might
expect after reading Section 9.7, which corresponds to standard work-stealing with public
deques. Indeed, when these operations return None, the atomic postcondition is not
informative: we learn nothing about the observed model values. This reflects the weak
behavior of other work-stealing strategies for which we cannot show that we observed
an empty deque. Fortunately, this is not a problem in practice; in particular, this weak
specification is sufficient for proving the termination property of Pool (see Section 10.5).

10.2.2 Public deques
10.2.2.1 Implementation

The first realization, Ws_deques_public # #, implements the standard work-stealing
strategy with public deques. More precisely, it simply relies on a shared array of Chase-
Lev work-stealing deques, as implemented in Saturn (see Section 9.7). These deques are

In fact, only steal_to is really needed by Ws_deques; the implementation of steal_as depends on
steal_to but is the same for all realizations. Unfortunately, factorizing steal_as would require functors,
which are not supported by ZooLang.
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Figure 10.2: Ws_deques: Specification (1/2)
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Figure 10.2: Ws_deques: Specification (2/2)

public in the sense that both their owner and the thieves can access it directly — which
requires synchronization.

10.2.2.2 Ghost state

The definition of the predicates and the proofs are relatively straightforward. No
special ghost state is needed.

10.2.3 Private deques
10.2.3.1 Implementation

The second realization, Ws_deques_private M #, implements the recewer-initiated
work-stealing algorithm proposed by Acar et al. [2013]?. Their idea is to reduce synchro-
nization costs in the fast path of local (owner-only) operations by essentially introducing
an indirection. They show that this work-stealing strategy performs well for fine-grained
parallel programs, i.e. when task sizes are small, especially irregular graph computations.

Instead of stealing directly from public deques, thieves follow a protocol: (1) having
selected a victim, a thief attempts to send a request by atomically updating the request cell
of the victim; (2) if the update fails, the thief starts over with another victim, otherwise it
awaits a response by repeatedly checking its response cell; (3) if the response is negative,
the thief starts over, otherwise it returns the task transferred by the victim.

2They also propose a sender-initiated algorithm that we have not implemented.

125


https://github.com/clef-men/zoo/tree/phd/lib/zoo_parabs/ws_deques_private.ml
https://github.com/clef-men/zoo/tree/phd/theories/zoo_parabs/ws_deques_private.v

CHANNELS-SENDER-EXCLUSIVE
channels-sender v i Uy state;

channels-sender v i U, statesy

False

CHANNELS-SENDER-RECEIVER-AGREE
channels-sender v i Wy (Some o)

channels-receiver v i U5 (Some 0y)
|>(\I;1 01 = \1/2 01> *

01 = 09 *

channels-sender v i ¥; (Some o;) *
channels-receiver v i U5 (Some 0y)

CHANNELS-SEND
channels-waiting 7 i

channels-sender v ¢ ¥ None

CHANNELS-WAITING-RECEIVER
channels-waiting v 4

channels-receiver vy i ¥ (Some o)

False

CHANNELS-PREPARE
channels-sender v i ¥; None

channels-receiver v i W5 None

[ channels-sender v i ¥ None x*
channels-receiver v i ¥ None

CHANNELS-RECEIVE
channels-sender v i Wy (Some 0)

channels-receiver v i W5 None

channels-sender v i ¥; (Some o) *
channels-receiver v i W5 (Some o)

E channels-sender v i ¥ (Some 0)

CHANNELS-RESET
channels-sender v i ¥; (Some o)

channels-receiver v i Wy (Some 0y)

E channels-waiting v i *
channels-sender v 7 U7 None
channels-receiver ~ i W5 None

Figure 10.3: Ws_deques_private: channels theory

Symmetrically, busy domains regularly poll their request cell and respond accordingly
through response cells. Crucially, tasks are stored in private, non-concurrent deques that
are only accessed by their owner. In addition, each domain has a status cell indicating
whether it is (1) blocked, meaning it has no task to share, or (2) non-blocked, meaning
it may have tasks to share; before sending a request, thieves check that their victim is
non-blocked.

10.2.3.2 Ghost state

External linearization. As the informal description of the algorithm suggests, thieves
rely on their victim for locally updating their tasks, including at the logical level. As a
result, the linearization of a successful steal_to or steal_as is always external. In Iris,
this is handled in the usual way: when a thief sends a request, it also sends an atomic
update (see Section 3.8), materializing its linearization point, through inv.

channels theory (Figure 10.3). The most interesting bit of the ghost state is the
channels theory, responsible for enforcing the communication protocol. It features three
predicates: channels-sender, channels-receiver and channels-waiting.

At the start of the protocol, a thief corresponding to the i-th domain owns both
channels-sender v i ¥; None and channels-receiver v ¢ W5 None; the third part, channels-waiting v 4,
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is stored in inv and remains there until the thief receives a response. Before making any
request, the predicates ¥; and W, are updated to ¥ (CHANNELS-PREPARE), the postcon-
dition of the thief’s atomic update.

When the thief succeeds in sending a request, it also sends channels-receiver to the cor-
responding victim through inv. Then, when the victim responds, it updates channels-sender
(CHANNELS-SEND), consuming channels-waiting in the process, and sends it back to the
thief along with ¥ (obtained by triggering the atomic update).

Crucially, the last part of the protocol is divided into two parts, as dictated by the
implementation. When the thief detects the response, it updates channels-receiver using
channels-sender but cannot retrieve it yet because the response cell has not been cleared;
from that moment on, however, it knows that channels-receiver awaits in inv (CHANNELS-
WAITING-RECEIVER). Finally, when the response cell is atomically cleared, the thief can
retrieve U and channels-sender; the latter is combined with channels-receiver (CHANNELS-
RESET) to reset the state of the protocol and generate a new channels-waiting to replace
channels-sender in inv.

10.3 Waiters

In the realizations of the second level, described in the next section, we use a sleep-based
mechanism to adapt the number of active thieves. The idea is to put to sleep desperate
thieves who do not find work after a number of failed steal attempts. In practice, doing
so can improve the overall system performance, especially when tasks are scarce.

To manage sleeping thieves, we use the Waiters module &/ #. Following the de-
sign of Taskflow [Huang et al., 2022|, it implements a two-phase commit protocol® —
Domainslib* relies on a similar mechanism, although it is not as clear-cut.

10.3.1 Specification

The specification is given in Figure 10.4. It features two predicates: inv and waiter.

The persistent assertion inv ¢t represents the knowledge that ¢ is a set of waiters. It is
returned by create (WAITERS-CREATE-SPEC) and require by all operations.

The exclusive assertion waiter ¢t wt represents the ownership of waiter wt attached to
t. To go to sleep, a thief first calls prepare_wait, returning a new waiter (WAITERS-
PREPARE-WAIT-SPEC). Then, it performs a few more steal attempts in case tasks were
to be inserted. If it finds some, it cancels the wait through cancel_wait (WAITERS-
CANCEL-WAIT-SPEC); otherwise, it commits through commit_wait (WAITERS-COMMIT-
WAIT-SPEC), which actually puts it to sleep.

To wake up one or several sleeping thieves, one may respectively call notify (WAITERS-
NOTIFY-SPEC) and notify_many (WAITERS-NOTIFY-MANY-SPEC). In practice, this hap-
pens when tasks are inserted or the scheduler is killed.

10.3.2 Implementation

The implementation relies on a concurrent queue of waiters. The queue is taken from
Saturn (see Section 9.2). As for the waiter data structure # #, it comes from our standard

3https://www.1024cores.net/home/lock-free-algorithms/eventcounts
“https://github.com/ocaml-multicore/domainslib/blob/main/1ib/multi_channel.ml
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Figure 10.4: Waiters: Specification

library (see Chapter 6); it simply consists of a flag coupled with a mutex and a condition
variable.

Taskflow uses a more efficient implementation that can be found in the Eigen® and
Folly® libraries. Unfortunately, it requires low-level bit manipulation not currently sup-
ported by ZooLang.

10.4 Work-stealing hub

At the second level, Ws_hub # provides a generic interface for a set of tasks support-
ing work-stealing operations — a so-called “work-stealing hub”. We describe its speci-
fication (Section 10.4.1) and two current realizations: Ws_hub_std (Section 10.4.2) and
Ws_hub_fifo (Section 10.4.3).

10.4.1 Specification

The specification is given in Figure 10.5. It is more or less similar to Section 10.2.1;
we highlight the differences in the following.

The model predicate now carries a multiset of values, as opposed to per-domain lists of
values. In other words, deques are not materialized anymore, which gives the realization
more freedom. As a matter of fact, the Ws_hub_fifo realization (see Section 10.4.3)
uses only one shared queue. More generally, this flexibility is needed to support complex
scheduling strategies with various task providers — hence the name “work-stealing hub”;
for example, both Domainslib and Taskflow’ introduce a foreign queue in addition to
standard work-stealing deques for external domains to submit tasks. Note that, although

Shttps://gitlab.com/libeigen/eigen/-/blob/master/Eigen/src/ThreadPool/EventCount.h
Shttps://github.com/facebook/folly/blob/main/folly/synchronization/EventCount.h
"We have not yet implemented this feature yet but do not anticipate any difficulty.
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Figure 10.5: Ws_hub: Specification (1/3)
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Figure 10.5: Ws_hub: Specification (2/3)
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Figure 10.5: Ws_hub: Specification (3/3)
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this interface does not enforce work-stealing, it must still support it; consequently, most
operations are parameterized with a deque index that may or may not be used by the
implementation.

The predicate carries a status as before but also an emptiness hint indicating
whether the deque is probably empty (Empty) or non-empty (Nonempty). Crucially, if all
deques think they are empty, the hub must be empty (WS-HUB-MODEL-EMPTY).

Contrary to Section 10.2.1, all operations except unblock require the hub to be non-
blocked. Indeed, blocking and unblocking is performed internally by stealing operations
(steal_until, pop_steal_until, steal, pop_steal) — we refrained from doing the
same in Ws_deques for performance reasons. However, we still need to expose the block
and unblock operations, which are used in Pool (see Section 10.5).

Speaking of stealing operations®, they evolved significantly. steal_until ¢ maz-round-noyield
pred (WS-HUB-STEAL-UNTIL-SPEC) repeatedly attempts to steal from other deques un-
til pred returns true; maz-round-noyield is an upper bound on the number of attempts
that may be performed without yielding, i.e. calling Domain.cpu_relax (see Section 2.1).
steal t ¢ maz-round-noyield maz-round-noyield (WS-HUB-STEAL-SPEC) repeatedly at-
tempts to steal from other deques until it succeeds or the hub is killed; maz-round-noyield
and maz-round-yield are upper bounds on the number of attempts that may be performed
respectively without and with yielding before pausing, e.g. using Waiters. Each of these
two operations has a variant, respectively pop_steal_until and pop_steal, that first
calls pop.

As mentioned above, a hub can be killed using the kill operation (WS-HUB-KILL-
SPEC), which is supposed to notify all workers, possibly waking up some in the process.

10.4.2 Work-stealing strategy
10.4.2.1 Implementation

The first realization, Ws_hub_std A #, implements the standard randomized work-
stealing strategy. Under the hood, any work-stealing algorithm may be used, provided
that it fits into the Ws_hub interface; in particular, it can instantiated with both realization
of Ws_deques.

10.4.2.2 Ghost state

The definition of the predicates and the proofs are relatively straightforward. No
special ghost state is needed.

10.4.3 FIFO strategy
10.4.3.1 Implementation

The second realization, Ws_hub_fifo A #, implements a simple “first-in first-out”
scheduling strategy. All workers push and pop tasks from a shared concurrent queue
taken from Saturn (Section 9.2); thieves also attempts to pop from the queue. Moonpool
adopted a similar strategy”.

8Similarly to Ws_deques, only steal_until and steal are really needed by Ws_hub. Factorizing
pop_steal_until and pop_steal would require functors, which are not supported by ZooLang.
Yhttps://github.com/c-cube/moonpool/blob/main/src/core/fifo_pool.ml
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As explained by Cruanes!®, the point of this strategy is to provide better latency than
work-stealing — as demanded by certain applications like network servers — at the cost
of a lower throughput. Indeed, contrary to work-stealing, older tasks have priority over
younger tasks.

However, this strategy may also have undesirable consequences. For example, in
divide-and-conquer algorithms, this strategy corresponds to breadth-first search, whereas
work-stealing corresponds to depth-first search. On large problems, the former may be un-
sustainable; on some benchmarks (see Section 10.9), especially for small cutoffs, Moonpool
saturates the memory.

10.4.3.2 Ghost state

The definition of the predicates and the proofs are relatively straightforward. Special
ghost state is required to enforce the “emptiness consensus” (WS-HUB-MODEL-EMPTY);
we refer to the mechanization # for details.

10.5 Pool

At the third level, Pool # # implements a task scheduler on top of a given realization
of Ws_hub. It offers essentially the same functionalities as Domainslib with a few notable
differences. (1) Exceptions raised by tasks are not caught and therefore not re-raised
properly by the scheduler since ZooLang does not currently support them. (2) Since
ZooLang does not support algebraic effects [Sivaramakrishnan et al., 2021] either, the
interface is slightly more involved (see execution contexts in Section 10.5.1).

Moreover, this limitation imposes a child-stealing strategy, as opposed to a continuation-
stealing strategy that would require capturing the continuation of a computation.

Also, this makes it difficult to implement a yield operation!!, i.e. an operation that
yields control to the scheduler, letting it reschedule the current task later.

10.5.1 Specification

The specification is given in Figure 10.6. It features five predicates: inv, model, context,

and obligation.

The persistent assertion inv ¢t vsz represents the knowledge that ¢ is a valid scheduler;
sz is the number of worker domains. It is returned by create (POOL-CREATE-SPEC) and
required only by size (POOL-SIZE-SPEC). Its only purpose is to record the immutable
characteristics of the scheduler.

The assertion model ¢ represents the ownership of scheduler ¢. It is returned by create
(POOL-CREATE-SPEC) and required by external operations (POOL-RUN-SPEC, POOL-KILL-
SPEC). For example, run t task submits task to scheduler ¢; it returns both model and
the output predicate of task.

The assertion context t ctx scope represents the ownership of ezecution context ctx
attached to scheduler ¢; scope is a purely logical parameter connecting input and output
context, which is necessary in the proof. Any task execution happens under such a con-
text (POOL-RUN-SPEC, POOL-ASYNC-SPEC, POOL-WAIT-UNTIL-SPEC). In particular, all
internal operations require and return context. For example, async ctz task submits task

Onttps://github. com/c-cube/moonpool/blob/main/src/core/fifo_pool.mli
"Domainslib does not currently provide a yield operation but it can be easily implemented.
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Figure 10.6: Pool: Specification
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asynchronously while executing under context ctx; task must be shown to execute safely
under any context attached to the same scheduler (POOL-ASYNC-SPEC).

The persistent assertion t represents the knowledge that scheduler ¢ has fin-
ished, meaning all submitted tasks were executed. It can be obtained by calling kill
(POOL-KILL-SPEC).

The persistent assertion obligation ¢ P represents a proof obligation attached to sched-
uler ¢. It allows retrieving P once t has finished executing (POOL-OBLIGATION-FINISHED).
Obligations are obtained by submitting tasks through async (POOL-ASYNC-SPEC).

10.5.2 Implementation

Worker domains. The implementation relies on a pool of worker domains and a work-
stealing hub. Each worker runs the following loop: (1) get a task using Ws_hub.pop_steal;
(2) if it fails, the scheduler has been killed and so the worker stops, otherwise execute the
task in the context of the current worker; (3) start over.

Blocking. Care must be taken to block and unblock work-stealing deques properly.
When the scheduler is killed, it is crucial that workers block their deque before stopping;
otherwise, the scheduler may never terminate because of a running worker waiting forever
for a response from a stopped but unblocked worker. Also, the main domain, from which
tasks can be submitted externally through run, must unblock when it is executing tasks
and block when it is not.

Awaiting. wait_until runs a loop similar to that of the worker domains described
above; the wait is active in the sense that the domain participate in the execution of
tasks. Consequently, wait_until calls can be nested. This can be a problem in practice
because it increases the call stack size in an arbitrary way, potentially causing stack
overflow.

Instead, Domainslib leverages algebraic effects: awaiting a future captures the con-
tinuation and stores it into the future; when the future is resolved, it resubmits all the
waiting tasks. This avoids any stack issue and is probably more efficient, since no polling
is necessary.

Shutdown. In Domainslib, scheduler shutdown consists in submitting special tasks
through the main domain; when a worker finds such a task, it quickly stops. However, this
simple mechanism has at least two drawbacks: (1) it introduces an indirection for every
regular task, which may be expensive; (2) it works well under standard work-stealing but
is more difficult to implement under other scheduling strategies, especially work-stealing
with private deques (see Section 10.2.3). Consequently, we use an alternative mechanism
implemented at the level of Ws_hub: a shared flag, regularly checked in Ws_hub.steal
and Ws_hub.pop_steal, is set when the scheduler is killed.

10.5.3 Ghost state

The most interesting part of the ghost state is the handling of proof obligations
(obligation), especially the proof of POOL-OBLIGATION-FINISHED. The idea is the fol-
lowing: at any point in time, a submitted task is either (1) finished, (2) in the global
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work-stealing hub, or (3) in the local task stack of one of the workers. When the sched-
uler is , all the workers are finished; therefore, the task stacks are empty and so
is the global hub, thanks to WS-HUB-MODEL-EMPTY; thus, any submitted task must be
finished and the corresponding obligation must be fulfilled.

10.6 Futures

At the fourth level, Future # # implements futures'?, a standard abstraction for
representing the future result of an asynchronous task.

10.6.1 Specification

The specification is given in Figure 10.7. It features four predicates: inv, result,

and obligation.

async allows submitting a task asynchronously while executing under a context (FUTURE-
SYNC-SPEC), returning a future representing the result of the task. To actually get the
result, one must call wait (FUTURE-WAIT-SPEC). iter ctr fut task attaches callback task
to fut (FUTURE-ITER-SPEC) and map ctz fut, task creates a new future to be resolved
after fut, (FUTURE-MAP-SPEC).

The persistent assertion inv pool t depth ¥ = represents the knowledge that t is a
valid future attached to pool pool such that: (1) U is the non-persistent output predicate
satisfied by the produced value; (2) Z is the persistent output predicate satisfied by the
produced value. depth is the depth of ¢ in the forest formed by all futures.

The persistent assertion result ¢ v represents the knowledge that future ¢ has been
resolved to value v. Using FUTURE-INV-RESULT, it can also be combined with inv to
obtain the persistent output predicate. After the pool has finished, it is guaranteed that
all futures have been resolved (FUTURE-INV-FINISHED).

The assertion t X represents the right to consume X once future ¢ has been
resolved. Indeed, using FUTURE-INV-RESULT-CONSUMER, it can be combined with inv
and result to obtain X. When t is created, this assertion is produced with the full non-
persistent predicate (FUTURE-ASYNC-SPEC, FUTURE-MAP-SPEC); then, it can be divided
into several parts (FUTURE-CONSUMER-DIVIDE).

The persistent assertion obligation pool depth P represents a proof obligation emitted
by iter (FUTURE-ITER-SPEC). It allows retrieving P once pool has finished (FUTURE-
OBLIGATION—FINISHED).

One notable aspect of this specification is that resolution of the future — as indicated
by result — is separated from the division of the output predicates — as achieved by

10.6.2 Implementation

Futures are implemented using ivars (see Section 6.10). async creates an ivar and calls
Pool.async to resolve it asynchronously. wait calls Pool.wait_until to wait actively
until the ivar is resolved and returns the resulting value.

2Futures are called promises in Domainslib. In fact, the two notions are often used in conjunction to
represent the two sides of the same object.
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10.7 Vertex

At the fourth level, Vertex # # implements DAG-calculus [Acar et al., 2016], i.e. a
task graph abstraction. Taskflow offers similar, although much more developed, abstrac-
tions. The longer term goal is to support the more practical Taskflow interface, including
static, dynamic, module and condition tasks.

The raison d’étre of these works is to represent more interesting dependency relations
than is possible using standard parallel primitives (fork/join, futures, etc.) in order to
express irregular parallel computations, e.g. those for graph problems.

Concretely, this takes the form of a simple and elegant programming model: a parallel
computation is seen as a graph where vertices represent basic sequential computations
and edges represent dependencies between vertices. A vertex can be executed only when
its predecessors, i.e. dependencies, are finished. Crucially, the structure of the graph is
not static: while executing, a vertex may create new vertices and edges. Naturally, with
great expressivity comes great responsibility: care must be taken not to introduce cycles
in the graph, although the model does allow looping on a vertex.

10.7.1 Specification

The specification is given in Figure 10.8. It features no less than six predicates: inv,
model, ready, output, and predecessor.

The persistent assertion inv ¢ P R represents the knowledge that ¢ is a valid vertex;
P is the non-persistent output while R is the persistent output. It is returned by create
(VERTEX-CREATE-SPEC) and required by most operations.

The exclusive assertion model ¢ task iter represents the ownership of vertex t. It is
returned by create (VERTEX-CREATE-SPEC). task is the current computation attached
to t; it can accessed using task (VERTEX-TASK-SPEC) and set_task (VERTEX-SET-TASK-
SPEC). iter is the current logical iteration of t. Indeed, a vertex may be executed several
times; more precisely, a vertex task returns a boolean indicating whether the vertex should
be re-executed.

The persistent assertion ready iter represents the knowledge that the iteration identi-
fied by iter has started — it may be finished and obsoleted by subsequent iterations.

The assertion output t () represents the right to consume ) from the non-persistent
output of ¢ once the latter has finished executing. It is returned by create (VERTEX-
CREATE-SPEC) with the full non-persistent output and can then be divided using VERTEX-
OUTPUT-DIVIDE.

The persistent assertion t represents the knowledge that vertex ¢ has finished
executing. It allows retrieving both the persistent (VERTEX-INV-FINISHED) and non-
persistent (VERTEX-INV-FINISHED-OUTPUT) output of .

The persistent assertion predecessor t iter represents the knowledge that iteration iter
has predecessor t, i.e. iter can only run once vertex ¢ has finished (VERTEX-PREDECESSOR-
FINISHED). It can be obtained through precede (VERTEX-PRECEDE-SPEC), including
while the target vertex is executing; in other words, a vertex may add dependencies to
itself so that its next iteration only starts when the new dependencies have finished.

The most important operation is release (VERTEX-RELEASE-SPEC), which declares
a vertex ready for execution, provided that its dependencies (more precisely, those of the
corresponding iteration) have finished. The current task must be shown to execute safely
in any execution context given back the possession of the vertex and produce the two
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Released

Figure 10.9: Vertex: Logical state

outputs.

10.7.2 Implementation

Our implementation is very close to that of Acar et al. [2016]. The representation of a
vertex consists of: (1) the current task, (2) an atomic counter corresponding to the number
of unfinished predecessors, (3) a closable concurrent stack from Saturn (see Section 9.1)
corresponding to the successors. When creating a new edge through precede, the target
is added to the successors of the source and the counter of the target is incremented.
After executing, a vertex atomically closes its successors and decrements their counter,
releasing those with zero remaining predecessors.

Actually, a vertex counter does not exactly correspond to the number of predecessors.
Before the vertex is released for the first time and during its execution, there is one
phantom predecessor preventing premature release; it is removed by release.

10.7.3 Ghost state

The implementation is fairly short but subtle, and so is the ghost state. We discuss
two interesting aspects of the latter.

Recursive invariant. Since a vertex stores its successors, which are themselves vertices,
the inv predicate is recursively defined. This involves an Iris fixpoint.

Logical state. As often when studying non-trivial fine-grained concurrent data struc-
tures, the physical state of a vertex does not determine its logical state. The set of logical
states and the transitions between them are displayed in Figure 10.9. Before a vertex is
released for the first time and during its execution, it is in the Init state; at this point, the
phantom predecessor is active. When it finishes executing, it transitions to the Finished
state. When it is released or re-executed, it transitions to the Released state; at this
point, it is not ready to be executed. When its counter reaches zero, meaning it has no
more predecessors, it transitions to the Ready state; at this point, it is submitted to the
scheduler. When it is scheduled and starts executing, it transitions back to the Init state.
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10.8 Parallel iterators

On top of Future, we implemented and verified standard parallel iterators # # that
are particularly useful for benchmarks (see Section 10.9): for_, for_each, fold and
find.

10.9 Benchmarks

In this section, we present simple benchmarks to assess the performance of Parabs
relatively to Domainslib and Moonpool on simple workloads. Benchmarking parallel
schedulers is subtle and difficult; we have not tried here to validate and study experimen-
tally all our implementation choices, or to cover the wide range of parallel workloads, but
to validate a simple qualitative claim:

For CPU-bound tasks, Parabs has comparable throughput to Domainslib,
a state-of-the-art scheduler used in production in the OCaml 5 library ecosys-
tem.

In fact our results validate a stronger qualitative claim: the performance of Parabs
are equal or better than Domainslib, with a 10% speedup in some cases.

Remark: we developed the benchmarks with Gabriel Scherer, who wrote most of this
section.

10.9.1 Setting
10.9.1.1 Machine

The benchmark results were produced on a 12-core AMD Ryzen 5 7640U machine, set
at a fixed frequency of 2GHz.

10.9.1.2 Parameters

For each benchmark, we pick an input parameter that gives long-enough computation
times on our test machine, typically between 200ms and 2s. We use the hyperfine tool
and run each benchmark ten time. All benchmark were run with two parameters varying:

e DOMAINS, the number of domains used for computation;

e CUTOFF, representing an input size or chunk size below which a sequential baseline
is used.

For each benchmark, we show:

e per-cutoff results with a fixed value DOMAINS = 6, which should be enough to expe-
rience scaling issues while not suffering from CPU contention;

e per-domain results with a CUTOFF value that is chosen to work well for all imple-
mentations for this benchmark.
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Remark: Large cutoff values tend to work well for benchmarks with homogeneous-
enough tasks, as they effectively amortize the scheduling costs. The advantage of having
schedulers that also perform well on small cutoffs are two-fold. First, this typically indicate
that they will adapt to irregular tasks (but: our benchmarks do not perform an in-depth
exploration of irregular workloads). Second, this can alleviate the burden of asking users
to choose cutoff sizes (by widening the range of values that perform well), an activity
which requires cumbersome hand-tuning and can limit performance portability.

10.9.1.3 Scheduler implementations

Each benchmark is written on top of a simple scheduler interface, for which the fol-
lowing implementations are provided:

e domainslib uses the Domainslib library;
e parabs uses our Parabs library;
e moonpool-fifo uses the Moonpool scheduler with a global FIFO queue of task;

e moonpool-ws uses the Moonpool scheduler with a work-stealing pool of tasks, which
is described as better for throughput

e sequential is a baseline implementation with no parallelism, all tasks run sequen-
tially on a single domain.

We used the latest software versions currently available: Domainslib 0.5.2, and Moonpool
0.9.

10.9.1.4 Benchmarks

fibonacci M. A parallel implementation of Fibonacci extended with a sequential cutoff:
below the cutoff value, a sequential implementation is used.

iota M. This benchmark uses a parallel-for to write a default value in each cell of an
array. We expect significant variations due to the CUTOFF parameter.

for_irregular #. This benchmark uses a parallel-for loop with irregular per-element
workload: as a first approximation, the i-th iteration computes fibonacci i; this cost grows
exponentially in ¢, so the majority of computation work is concentrated on the largest
loop indices.

lu . This benchmark performs the LU factorization of a random matrix of floating-
point values. It consists in O(N) repetitions of a parallel-for loop of O(N) iterations,
where each iteration performs O(N) sequential work.

matmul . This benchmark computes matrix multiplication with a very simple par-
allelization strategy — only the outer loop is parallelized. In other word, there is a
parallel-for loop with O(N) iterations, where each iteration performs O(N?) sequential
work work.
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10.9.2 Results
10.9.2.1 Pre-benchmarking expectations

Our expectation before running the benchmarks is that Parabs has the same perfor-
mance as Domainslib, and that they are both more efficient than Moonpool (which uses
a central pool of jobs instead of per-domain deques).

Because Moonpool has a less optimized scheduler, we expect scheduling overhead to
be an issue for small CUTOFF values.

On all schedulers, the performance for larger CUTOFF values should be good if the
benchmark has homogeneous/regular tasks, and it should be worse if the benchmark has
heterogeneous /irregular tasks.

10.9.2.2 Per-benchmark results

Figure 10.10 contains the full results, with per-cutoff and per-domain plots for each
benchmarks. Notice that while the per-domain plot always use linear axes, the per-cutoff
plots often use logarithmic plot axes, to preserve readability when performance difference
become very large for small cutoff values, and to express large ranges of possible cutoff
choices.

fibonacci. In the per-cutoff results (logarithmic scale), we see that all schedulers start
to behave badly when the CUTOFF becomes small enough, with exponentially-decreasing
performance after a certain drop point. For Moonpool, performance drops around CUTOFF =
20. The FIFO and work-stealing variants have similar profiles, with work-stealing per-
forming noticeably better. For Parabs and Domainslib, performance drops around
CUTOFF = 12. Parabs performs noticeably better for small-enough cutoff values. In
fact, even for the sequential scheduler we observe a small performance drop: the task-
using version creates closures and performs indirect calls, so it is noticeably slower (by a
constant factor) than the version used below the sequential cutoff.

Note: we observe very large memory usage with Moonpool at smaller cutoff values —
when computing fibonacci 40, attempting to run the benchmark with CUTOFF = 5 fails
with out-of-memory errors on a machine with 32Gio of RAM. This seems to come from
the FIFO architecture which runs the oldest and thus biggest task first, and thus stores
an exponential number of smaller tasks in the queue.

Per-domain results (linear scale): we studied per-domain performance on a CUTOFF =
25 point where all implementations behave well. For this value we see that parabs
and domainslib perform similarly, and both moonpool implementations are measurably
slower. Performance becomes very close for larger number of domains (DOMAINS > 7).

for_irregular. This benchmark is designed to behave poorly with large CUTOFF values.
We indeed observe better noticeably performance with CUTOFF = 1 than with larger values,
across all schedulers — for example domainslib is 50% slower with CUTOFF = 8.

In the per-cutoff results we observe that parabs performs best on this benchmark,
then domainslib, then moonpool.

In the per-domain results (with CUTOFF = 1) we see that parabs performs noticeably
better than the other implementations for relatively low domain counts, and they become
comparable around DOMAINS > 7.
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iota. Each iteration of parallel-for in iota is immediate, so as expected we observe a
large sensitivity to the choice of CUTOFF, with parabs and domainslib performing much
better than moonpool on smaller CUTOFF values.

In the per-domains result we see that domainslib and parabs have similar perfor-
mance, noticeably better than the moonpool implementations.

lu. The performance is relatively stable over most choices of CUTOFF. The per-domain
results are similar across all benchmarks after controlling for the one-domain shift of
Moonpool.

Remark: we observe a marked decline in performance, across all schedulers, when the
number of domains becomes close to the number of available cores, around DOMAINS > 10.
We believe that this comes from the high-allocation rate of this benchmark (10.2GiB/s)
causing frequent minor collections, and thus stop-the-world pauses, with some domains
temporarily suspended by the operating system. In other words, the slowdown comes
from the OCaml runtime, not from the scheduler implementations. The allocations can
be avoided in this benchmark by optimizing more agressively to eliminate float boxing,
but this phenomenon is likely to occur for other high-allocation OCaml programs so we
chose to preserve it.

matmul. The performance is stable across a wide range of CUTOFF values. The parallel-
loop performs 500 iterations, so CUTOFF values closer to 500 prevent parallelization and
bring performance closer to the sequential scheduler.

The per-domain performance is remarkably similar under all schedulers: our imple-
mentation of matrix multiplication has a coarse-grained parallelization strategy where the
choice of scheduler makes no difference.

10.9.2.3 Result summary

Overall, Parabs has the same qualitative performance as Domainslib. In fact it per-
forms measurably better (around 10% better for some domain values) on the benchmarks
fibonacci and for_irregular, which have irregular tasks; and it has qualitatively the
same performance otherwise.

10.10 Related work

To the best of our knowledge, Parabs is the first realistic scheduler to be verified
in Iris. Previous works cover toy implementations, not suitable for real-world usage; in
contrast, our implementation is close to state-of-the-art schedulers and offers comparable
performance according to our preliminary experiments.

De Vilhena and Pottier [2021] verify a simple cooperative scheduler based on algebraic
effects, which serves as a case study for their Iris-based program logic. This scheduler
does not support parallelism; it runs fibers inside a single domain. Their notion of fu-
ture/promise is rudimentary; it only supports persistent output predicates. However,
their work, especially the way they formalize the scheduler’s effects, will be of particular
interest when introducing algebraic effects into ZooLang and Parabs.

Ebner et al. [2025] verify a parallel scheduler with the same interface as Domainslib,
which also serves as a case-study for their program logic. However, their implementation
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is extremely simplified: a task list protected by a mutex. Their notion of future/joinable
is also somewhat rudimentary.

10.11 Future work

As already mentioned throughout this chapter, there are many avenues for future
work.

Language features. Parabs suffers from the lack of a number of language features un-
supported by ZooLang. With functors, we could make the Parabs library completely mod-
ular. With exceptions, we could catch and re-raise exceptions in Pool and Vertex. With
algebraic effects, we could get rid of evaluation contexts in Pool, implement continuation-
stealing, Pool.yield and improve Pool.wait.

Extensions. In the future, we would like to extend the library in several directions: (1)
develop the interface of futures, similarly to Moonpool!?; (2) support the different task
types of Taskflow, aiming at a more practical Vertex interface.

Other designs. We could experiment other designs. For instance, one of the two
designs of Moonpool relies on a bounded work-stealing deque combined with a master
queue. In the literature, many other scheduling strategies were proposed: continuation-
stealing [Schmaus et al., 2021; Williams and Elliott, 2025|, steal-half work-stealing [Hendler
and Shavit, 2002, split work-stealing [Dinan et al., 2009; Rito and Paulino, 2022; van
Dijk and van de Pol, 2014; Custodio et al., 2023; Cartier et al., 2021], idempotent work-
stealing [Michael et al., 2009].

B3https://github.com/c-cube/moonpool /blob /main /src/core/fut.mli
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Chapter 11

Kcas: Lock-free multi-word
compare-and-set

Traditional synchronization mechanisms like mutexes and concurrent queues do not
compose and can be challenging to use. Transactional memory |Shavit and Touitou,
1995] is an abstraction that offers both a relatively familiar programming model and
composability.

The Kcas [Karvonen, 2025a] library provides a software transactional memory (STM)
implementation for OCaml. Thanks to its convenient direct style interface, writing a
concurrent transaction is as simple as in Figure 11.1. Essentially, a transaction is a
specification for generating a list of compare-and-set (CAS) operations to be committed
together atomically.

Under the hood, Kcas relies on a state-of-the-art multi-word compare-and-set (MCAS)
algorithm [Guerraoui et al., 2020|, a generalization of CAS: given a set of distinct memory
locations and corresponding expected and desired values, MCAS atomically either (1)
updates all locations from expected values to desired values and succeeds or (2) observes
an unexpected value at some location and fails.

The actual implementation of Kcas significantly improves and extends this algorithm.
In this chapter, we present a verified implementation # # of its core; the verification of
the full interface is left for future work (see Section 11.5).

11.1 Specification

The specification of MCAS is given in Figure 11.2. The persistent assertion loc-inv £ ¢
represents the knowledge that ¢ is a valid MCAS location. The exclusive assertion ¢ —
v represents the ownership of location ¢ and the knowledge that it contains value v.
make v creates a new location initialized with v. get ¢ atomically reads the content
of 0. cas ls befores afters performs an MCAS operation on locations /s with expected
values befores and desired values afters; on success, it atomically updates ¢s from befores
to afters; on failure, it must have observed a location whose value was different than
expected.
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let a = Loc.make a in

let b = Loc.make b in

let x = Loc.make z in

let tx "xt =
let a = Xt.get "xt a in CAS (a, a, a)
let b = Xt.get “xt b in CAS (b, b, b)
Xt.set "xt x (b - a) CAS (x, =z, b—a)

in

Xt.commit { tx }

Figure 11.1: Transaction example and the corresponding list of CASes
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Figure 11.2: Specification
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Figure 11.3: Representation of locations

11.2 Implementation

We describe the implementation of the MCAS algorithm of Guerraoui et al. [2020] in
OCaml, as proposed! by Vesa Karvonen.

Representation of locations. An MCAS location is represented as an atomic reference
to a (mutable) descriptor, as shown in Figure 11.3. A descriptor contains two values, one
of which corresponds to the logical content of the location, and the MCAS operation
it belongs to; this MCAS operation is the last to have locked the location by writing
the descriptor in question. Crucially, each descriptor is unique and belongs to only one
MCAS.

An MCAS operation is represented as an atomic reference to a status. When the
MCAS has finished, its status is either A (after), meaning it succeeded, or B (before),
meaning it failed. While the MCAS is still ongoing, its status is U (undetermined). To
make the algorithm lock-free, other operations have to be able to help the MCAS finish;
therefore, a U status links back to the target locations and the corresponding descriptors,
resulting in a cyclic structure. In the algorithm we verified, this structure is a list; in the
actual Kcas implementation, it is a splay tree.

Locking. Comparatively to previous implementations like that of Harris et al. [2002],
this MCAS algorithm is simpler: it includes a locking phase but no unlocking phase —
on the other hand, there is an extra indirection for reads.

Figure 11.4 shows a successful execution of an MCAS operation. Initially, the status
is U. For each target location, the operation first checks that the current value is as
expected and then attempts to atomically install its descriptor (Figures 11.4b and 11.4c¢),
thereby “locking” the location. If the locking phase succeeds, the operation then atomically
updates its status to A (Figure 11.4d), which corresponds to the point when locations are
logically modified. Additionally, contrary to the original implementation, cleaning up is
required to allow stale values to be garbage-collected (Figures 11.4e and 11.4f).

Figure 11.5 shows a failing execution of an MCAS operation. If the operation finds

https://github.com/ocaml-multicore/kcas/blob/main/doc/gkmz-with-read-only-cmp-ops.
md
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Figure 11.4: Successful MCAS execution
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b

b

Figure 11.5: Failing MCAS execution

an unexpected value during the locking phase, it atomically updates its status to B (Fig-
ure 11.5b) and cleans up stale values (Figures 11.5¢ and 11.5d).

Helping. So far, we only considered uncontended executions; in reality, one location
may be targeted by concurrent get and cas operations. Basically, everything happens
just as before except operations help one another: if an operation encounters a descriptor
whose MCAS operation is still in progress, it helps that MCAS operation to finish first.

External linearization. Consequently, the linearization point of both get and cas
may be external. In fact, a helper may linearize many operations at once, including the
original MCAS and other helpers. Also, a helper may linearize a helped MCAS while
helping yet another MCAS.

Future-dependent linearization. When two operations helping an MCAS detect an
unexpected value, they both attempt to atomically update its status to B. The ques-
tion is: which of them linearizes the MCAS operation (and other helpers) at the point
when it observes an unexpected value? The answer is: the one which “wins” the update.
Consequently, the linearization point of cas may also be future-dependent.

Liveness. As it is, the algorithm allows MCAS operations to recursively help one an-
other. Obviously, this is problematic in practice. A simple solution consists in sorting the
locations beforehand, thereby preventing cycles.
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11.3 Proof insights

The implementation is fairly short (one hundred lines of code) but extremely subtle.
We outline the main challenges.

Mutually recursive invariants. Due to the cyclic structure of ongoing MCASes (see
Figure 11.3c), the definitions of the location invariant (loc-inv) and the MCAS invariant
are mutually recursive. Thankfully, Iris provides a way to define such fixpoints.

Another difficulty comes from the fact that the creation of a location involves a dummy
MCAS operation whose invariant has to be initialized at the same time as the location’s.
We had to introduce a way to break the cycle.

Logical state. The verification involves a monotonic logical status that is not deter-
mined by the physical status: the physical U status is divided into indexed logical U
status indicating the progress made by the MCAS operation.

External linearization. To handle external linearization of an MCAS operation and
its helpers by a helper, their atomic updates (see Section 3.8) are stored into the MCAS
invariant. At the linearization point, the winning helper triggers all the atomic updates
and puts them back into the invariant to be retrieved later by their respective owner.

Global prophecy variable. To handle future-dependent linearization, we predict both
the winner and the outcome of an MCAS operation through a shared prophecy variable
(see Chapter 5). To distinguish the winner, we use the same trick as Jung et al. [2020]
in their proof of RCDSS: each MCAS participant is assigned a unique physical identifier
(implemented using a prophecy variable) that is part of the prediction.

Local prophecy variable. For subtle reasons related to the semantics of physical equal-
ity (see Section 4.2.3), we also need to introduce a local prophecy variable in cas. Essen-
tially, the problem is that we cannot predict the outcome of physical equality in advance
just by looking at the values; in other words, equality in Rocq does not imply physical
equality in OCaml.

MCAS history. Another subtle point in the algorithm is the fact that a location cannot
be locked more than once by a single MCAS operation. While this is obvious when reading
the code, it is not in the proof. To enforce it logically, each location maintains a ghost
history of distinct MCASes; all MCAS in this history are finished except the more recent
one.

11.4 Related work

We believe our work is the first verification of the MCAS algorithm of Guerraoui et al.
[2020] and more generally the first foundational verification of an MCAS algorithm.

We are aware of one closely related line of work. Vafeiadis [2008] sketches a proof of
the RDCSS and MCAS algorithms of Harris et al. [2002]. However, Jung et al. [2020]
show that his proof of RDCSS is flawed and verify it in Iris, using prophecy variables;
they also verify both RDCSS and MCAS using VeriFast |Jacobs et al., 2011].
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Figure 11.6: Specification with read-only locations

11.5 Future work

Read-only locations. When a location is read during a transaction, the generated
MCAS operation (see Figure 11.1) includes a read-only CAS whose expected and desired
value are the same; the intended behavior of this CAS is to only assert that the location
has not changed after the read. As we have seen in the implementation, however, every
location has to be locked for the MCAS to succeed. As a consequence, CAS operations
targeting the same location can only execute sequentially, even though they do not change
the logical content of the location. This makes read-only CASes inefficient and unscalable.

To address this issue, Vesa Karvonen extended upon the original algorithm [Guerraoui
et al., 2020] to allow read-only operations to be expressed directly and not write into
memory; the result is a k-CAS-n-CMP algorithm. The idea is the following: at the start,
we read the states of read-only locations; at the end, after all other locations have been
locked, we check that read-only locations have not changed before finishing the MCAS
operation. Crucially, read-only locations are not modified, allowing CMP operations to
run in parallel.

There is one drawback, however. This new algorithm is obstruction-free but not lock-
free like the original one. In particular, two MCASes may cancel each other indefinitely.
To get the best of both worlds, Kcas first attempts the MCAS operations in obstruction-
free mode (CAS and CMP) and switches to lock-free mode (CAS only) after a number of
failed attempts; the resulting algorithm is lock-free.

From the verification perspective, the new algorithm behaves slightly differently. In-
deed, it does not satisfy the former specification (see Figure 11.2): it may happen that cas
fails although none of the locations was observed to have a different value than expected.
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This is due to the fact that the state of a read-only location might have changed without
its logical content changing. In practice, such spurious failures are rare and simply cause
the MCAS operation to be retried. The new, weaker specification is given in Figure 11.6.
We sketched the new invariant and proof on paper, leaving the mechanization for future
work.

Relaxed memory model. It would be interesting to carry out the verification in the
relaxed memory model. We expect to be able to prove the specification of Figure 11.7.
Similarly to primitive atomic locations [Mével et al., 2020], MCAS locations carry a logical
memory view. get ¢ acquires the view stored in ¢. On success, cas fs befores afters
releases the view of the caller through locations ¢s and acquires their own views.

Transactional interface. In the future, we would also like to extend the verification
to the full Kcas interface, including transactions. This is challenging for two reasons. (1)
The real implementation is even more complex: internally, CAS operations are stored in a
splay tree, used as a transaction log, rather than a list; the MCAS algorithm traverses the
tree in a depth-first manner. (2) Specifying transactions in a composable way appears to
be non-trivial. That being said, the implementation is relatively short (approximatively
one thousand lines of code), so it should be feasible in practice.
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Chapter 12

Memory safety

OCaml is a memory-safe language: well typed programs cannot go wrong (segfault
at runtime). Actually, similarly to Rust, this strong property only holds for programs
that do not make use of unsafe features of the language, including the 0bj! module and
unchecked array accesses (Array.unsafe_get, Array.unsafe_set).

12.1 Unsafe features

Unsafe features are reserved for expert programmers who want either (1) more ex-
pressive types — for instance, the Rocq extraction mechanism —, (2) take advantage of
the low-level value representation — for instance, the trick of Section 2.3.2.2 —, or (3)
better performance — for instance, performing unsafe array accesses when bound checks
are redundant. They should be used with great care, as they may not only break memory
safety but also interact in a complex way — this is somewhat of a dark corner of the
language — with compiler optimizations, especially Flambda?, possibly across module
boundaries.

Usually, unsafe features are encapsulated inside a function or a module: although the
implementation relies on unsafe features, the API is safe. Informally, the programmer
has to ensure that each unsafe operation is used in a context where it is safe do so; for
example, unsafe array accesses require somehow checking bounds. In the case of a module,
he can reason on internal invariants attached to exposed types and maintained by exposed
functions; the abstraction barrier prevents users from breaking these invariants.

12.2 Semantic typing

To formally reconcile memory safety and unsafe features, RustBelt [Jung et al., 2018a)
popularized semantic typing [Timany et al., 2024|. Concretely, this approach consists in
interpreting types as persistent Iris predicates. For example, the bool and int types are
interpreted as:

[oool] 2 Av.3beB.v =0
[int] £ Nv.3n€Z.v=n

"https://ocaml.org/manual/5.3/api/0bj.html
’https://ocaml.org/manual/5.3/flambda.html
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More interestingly, product and function types are interpreted as:

[ x ] 2 Av.3 v w.v= (v, ) * [1] v * [r] »

[[Tl—>72]]é)\v.D(V w. [7] w—xwp v w {[[7'2]] })

In words: 7 X 7, represents the set of pairs (v, v3) such that v is in 7, and vy is in 7o;
T1 — To represents the set of functions that are safe to call given an argument in 71 and
whose return value, if any, is in 75.

Given these basic semantic types, one may easily show that the (ZooLang translation
of the) following function, which reimplements snd using the unsafe Obj module, is in
T1 X Ty — T for any 7 and 7y:

let snd (p : 'a * 'b) : 'b =
Obj.(obj (field (repr p) 1))

After type erasure, both 0bj.obj and Obj.repr become the identity. 0bj.field v i
reads the i-th field of the block v; if v is not a block or i is greater than the size of the
block, the program crashes. It is safe here because we know from 7 X 75 that p is a block
with exactly two fields.

Semantic typing allows to give a meaning to the unsafe parts of a program. Crucially,
these parts can be linked with the rest, that is the syntactically well-typed parts, thanks
to the fundamental theorem?® |Timany et al., 2024]: syntactic typing implies semantic
typing. In other words, to prove that a program is memory-safe, it suffices to prove that
its unsafe parts are.

Note that the RustBelt semantic types are derived from Rust types, where mutating
operations get a mutable borrow and thus exclusive ownership (for a time). In contrast,
OCaml semantic types carry no ownership of the values; consequently, they must be
robust against concurrent interferences. In particular, mutable types are represented as
invariants and all modifications must preserve these invariants atomically. For example,
the semantic type corresponding to non-atomic references ('a ref) is:

[ref 7] = Av.3 v =0T w.l— w* [7] w‘

12.3 Dynarray

Until version 5.2, unlike other languages like C++*, OCaml did not provide a standard
implementation of dynamic arrays. The reason is that, although this data structure is
very common, it is actually quite difficult to reach a consensus on the implementation.

To explain why, let us first recall how dynamic arrays are implemented. A dynamic
array is represented as a record with two mutable fields: (1) a size field storing the length
of the dynamic array as perceived by the user and (2) a data field storing the backing
array, a finite array of length at least size.

When the user inserts an element to the end of a dynamic array, it typically suffices
to (1) write the element at index size in the backing array and (2) increment size.
However, when size reaches the actual length of the backing array, called the capacity,

3We have not formalized this theorem, as it would require formalizing the OCaml type system — a
bold enterprise, to say the least.
‘https://en.cppreference.com/w/cpp/container/vector.html

158


https://en.cppreference.com/w/cpp/container/vector.html

we need to (1) allocate a new, larger backing array, (2) copy the elements from the old to
the new backing array and (3) overwrite data with the new backing array.

The backing array may also be shrunk, either by the implementation to reduce memory
usage or when the user explicitly asks for it through fit_capacity.

One thing is left unsaid in this description: as the backing array is larger than necessary
to amortize the resizing, we need to put some wvalues in the invalid slots at the end of
the backing array. Importantly, these values stay alive and therefore cannot be garbage-
collected until they are overwritten through insertions; naturally, this aspect is irrelevant
in manually managed languages. They are many ways to handle this, leading to different
implementations; we present four of them.

12.3.1 First implementation

A first solution is to ask the user to provide a default value and use this value to fill
the invalid part of the backing array. However, this is problematic because (1) the user
has to come up with such a value in the first place and (2), as we said, the default value
cannot be garbage-collected. For simple types, including immediate types like int, this
approach is fine. In general, it is not ideal, if not unacceptable.

12.3.2 Second implementation

A second solution is to use something like Obj.magic () as a default value. We
verified the functional correctness of this implementation as part of Zoo’s standard li-
brary # #. However, while it should be possible to make this implementation memory-
safe in OCaml 4 by exploiting the fact that thread switching happens only at certain
points, it is not memory-safe in OCaml 5. Indeed, incorrect parallel use may lead to
the unsafe default value leaking outside the module. In other words, the introduction of
parallelism in OCaml 5 adds more interleavings and therefore breaks the memory safety
of some existing code.

At this point, some OCaml programmers may argue that it is the user responsibility
to use this sequential data structure correctly — possibly by using a lock to prevent data
races — and that careless users do not deserve memory safety. However, the OCaml
maintainers consider that memory safety should be preserved even under incorrect use.
The only exception is when an operation is explicitly marked as unsafe, in which case the
preconditions should be documented.

12.3.3 Third implementation

A third solution is to introduce an indirection: instead of storing the elements directly
in the backing array, we use something like 'a option, where 'a is the type of the
elements. Some is used for the valid slots while None is used for the invalid slots.

In 2023, Gabriel Scherer proposed such an implementation®, based on the following
representation:

type 'a slot =
| Empty
| Element of { mutable value: 'a 7}

Shttps://github.com/ocaml/ocaml/pull/11882
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Figure 12.1: Dynarray: Semantic type

type 'a t =
{ mutable size: int;
mutable data: 'a slot array;

¥

Note that, contrary to Some, the Element constructor is mutable, which allows modifying
a slot in-place instead of reallocating it.

We verified the functional correctness and memory safety of (a subset of) this imple-
mentation as part of Zoo’s standard library # #. Internally, it relies on unsafe array
accesses to avoid redundant bound checks — this can significantly improve performance.
Consequently, to ensure memory safety even under incorrect parallel use, the implemen-
tation adopts a defensive programming style. Consider, for example, the push function
that inserts an element at the end of a dynamic array. One may naively implement it as
follows:

let push t slot =
let sz = t.size in
if Array.length t.data <= sz then
reserve t (sz + 1) ;
t.size <- sz + 1 ;
Array.unsafe_set t.data sz slot

Functional correctness stems from the fact that, after the potential resizing, we know
the backing array has enough space so we can write the slot using Array.unsafe_set.
However, similarly to Section 12.3.2, this implementation is memory-safe in OCaml 4 but
is not in OCaml 5. Indeed, another domain could mutate the backing array after the size
check and before the unsafe write, e.g. the reset operation which empties the backing
array. By contrast, the implementation proposed by Gabriel Scherer is memory safe:

let rec push t slot =
let sz = t.size in
let data = t.data in
if Array.length data <= sz then (
reserve t (sz + 1) ;
push t slot
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) else (
t.size <- sz + 1 ;
Array.unsafe_set data sz slot

)

The difference is that, in the infrequent case when resizing is necessary, we restart the
operation instead of performing an unsafe write. This is akin to a retry loop in concurrent
programming (see Section 2.3.2.1).

To verify memory safety, we use the semantics types of Figure 12.1; for example, push
isin [t 7 — 7 — unit]. Essentially, t 7 requires (1) the size field to be positive and (2)
the backing array to contain elements of type slot 7. The array type carries the size —
here, the capacity of the backing array —; this is needed to type unsafe accesses, e.g. the
semantic type of Array.unsafe_get is array 7 sz — [0; sz) — unit. In general, semantic
types are richer than syntactic types, they are refinement types [Jhala and Vazou, 2021].

12.3.4 Fourth implementation

In 2024, Gabriel Scherer proposed a new implementation®. Compared to the previous
one, it involves no indirection. Instead, each dynamic array creates and stores a unique
dummy value — essentially an untyped memory block — and uses it as a default value.
This is similar to the second solution of Section 12.3.2 except the dummy is guaranteed
to be distinct from any user value. Thanks to this property, the implementation can be
made memory-safe by systematically filtering returned elements: checking that they are
distinct from the dummy and raising an exception otherwise.

Then, it is crucial for functional correctness that the property be preserved under
correct use. Indeed, if the user could come up with and insert an element physically
equal to the dummy, this element would be filtered by the safety check, thereby raising
an unexpected exception.

Informally, the property holds because the dummy s never leaked outside the module.
A bit more formally, once the dummy is created, it remains private to the module, i.e.
it does not leave the space composed of the dynamic array itself and the operations —
either public or private. In fact, one may see the dynamic array as the only keeper of the
dummy; the operations locally open the dynamic array to reveal the dummy and close it
on return.

Even more formally, the idea is that the dynamic array controls the reachability of the
dummy, as studied by Moine et al. [2023]. The representation predicate of a dynamic array
holds an exclusive pointed-by assertion attesting that the dummy is currently unreachable
directly from the program stack. To access the dummy, the operations pull the pointed-by
out of the representation predicate they are given as precondition and use it to locally and
temporarily extend the reachability of the dummy. On return, they reduce the reachability
— which is possible only if the dummy has not leaked — and put the pointed-by back
in the representation predicate. Interestingly, what looked like a global property can be
stated as a local property.

Unfortunately, we currently cannot formalize this reasoning in the ZooLang program
logic as it does not support the pointed-by assertion. However, we plan to support it in
the future. One difficulty is that we cannot just reproduce the formalization of Moine
et al.; this would pollute the entire logic. Instead, we need to distinguish two modes: (1)

Shttps://github.com/ocaml/ocaml/pull/12885

161


https://github.com/ocaml/ocaml/pull/12885

in non-tracking mode, everything works as usual but we cannot use pointed-by assertions;
(2) in tracking mode, we can use pointed-by assertions to reason about reachability, at
the cost of increased proof burden. Finally, we need a way to switch between modes.

12.4 Saturn

The question of memory safety also arises in the concurrent data structures of the
Saturn library (see Chapter 9).

For example, we explained in Section 9.2 that the Saturn implementation of the
Michael-Scott MPMC queue is careful to erase values stored in the queue to avoid memory
leaks. This erasure is performed by writing the unsafe dummy value Obj.magic ().
Despite this, the data structure is memory-safe; we proved it using a semantic type #
which is essentially the concurrent invariant of the queue.

By contrast, more restrictive data structures like the MPSC and SPSC variants of the
Michael-Scott queue are not memory-safe and should be used cautiously. If the user does
not respect the corresponding discipline, i.e. only one producer and/or only one consumer,
he loses memory safety — he may observe Obj.magic (). From the Iris perspective, the
problem is that the token representing the unique producer/consumer is not persistent
and therefore cannot be shared except through an invariant, but then it can be accessed
only atomically — which is not sufficient.

The Saturn authors also provide safe variants of the unsafe data structures. These
variants are slower but memory-safe even under unintended concurrent use. Typically,
this involves indirections such as using the type 'a option instead of 'a, which provides
a type-safe None value for dummies.

12.5 Future work

The proofs of memory safety that we presented in this chapter were done manually
in Iris. This approach is very tedious, all the more so as most of the reasoning is fairly
simple, mainly involving integer arithmetic — especially in the Dynarray case study.

In the future, we would like to automate the process in part: we imagine a tool that
would take user-annotated OCaml code as input and automatically check memory safety.
In general, we need annotations since type invariants are more precise than syntactic
types; for example, the verification of Dynarray relies on the invariant that the size field
is positive.
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Chapter 13

Conclusion

Initially, the ambition of this thesis was to build a wverified parallel infrastructure for
OCaml 5. This goal has not been fully attained: much remains to be done to get a practical
and full-fledged infrastructure. However, the more modest underlying experiment has
been overall successful: developing realistic parallel abstractions backed by verified formal
specifications.

During this experiment, we developed the Zoo framework (Chapter 4) whose prac-
ticality is demonstrated by various case studies. From the research perspective, Zoo
corroborates the idea that Iris-based verification frameworks can scale to real-life pro-
gramming languages and large pieces of software. Yet again, however, much remains to
be done:

Relaxed memory model. As we pointed out in Section 4.4, the main limitation of
ZooLang is currently its sequentially consistent memory model, as opposed to the relaxed
memory model [Dolan et al., 2018] of OCaml 5. This simplification endangers the sound-
ness of our specifications. Hopefully, transitioning Zoo to relaxed memory should not be
very difficult — conceptually, at least — thanks to the work of Mével et al. [2020].

Language subset. ZoolLang has been designed from the start for pragmatic verification
of advanced concurrent data structures; this informed the choice of feature coverage and
the semantics design. To extend Parabs (Chapter 10), and more generally to accommo-
date other uses, more features are needed and therefore should be supported: exceptions,
algebraic effects, modules, functors.

Iris proof mode. During the mechanization of our work in the Rocq proof assistant
using the Iris proof mode [Krebbers et al., 2018|, we faced major bottlenecks, as Park
et al. [2025] also recently reported: (1) the overwhelming proof burden, including more
or less trivial Iris goals, which can be reduced thanks to Diaframe [Mulder et al., 2022;
Mulder and Krebbers, 2023|; (2) the poor performance of Iris interactive proof checking
(large proof scripts require minutes to be processed), which is currently unavoidable.

Another minor bottleneck was Iris context management, which becomes fairly over-
whelming when repeatedly accessing large invariants. As a quality-of-life improvement, we
introduced so-called custom introduction patterns in the Iris proof mode (still experimen-
tal at the time of writing), that allow introducing (naming and normalizing) hypotheses
in a systematic way.
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Specification language. In the framework that we presented, Iris specifications live
entirely in Rocq. In the future, it would be interesting to provide a specification language
for OCaml programmers to write formal specifications directly in the source code; these
specifications would be also translated by ocaml2zoo. A natural first candidate is the
Gospel [Charguéraud et al., 2019] specification language. However, our first attempts
suggest that this is not the best way to go: Gospel proposes concise specifications in
simple cases, but falls short rapidly when it comes to higher-order functions, multiple
representation predicates and atomic specifications. Another, more promising way is to
start from and adapt the VeriFast [Jacobs et al., 2011] specification language; we are
currently experimenting this approach.

Automation. In the future, we also would like to develop automation in two directions.
(1) Improve Iris proof automation, mainly by customizing Diaframe. (2) We envision a
larger framework coupling foundational verification in Rocq (current approach) with semi-
automated verification similarly to Why3 [Filliatre and Paskevich, 2013] — which requires
a specification language in the first place.
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